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ABSTRACT

The principle of the minority subordinate to the majority is the most feasible and credible when peo-
ple make decisions in real world. So generalized multigranulation rough set theory is a desirable fusion
method, in which upper and lower approximations are approximated by granular structures satisfying a
certain level of information. However, the relationship between a equivalence class and a concept under
each granular structure is very strict. Therefore, more attention are paid to fault tolerance capabilities of
double-quantitative rough set theory and the feasibility of majority principle. By considering relative and
absolute quantitative information between the class and concept, we propose two kinds of generalized
multigranulation double-quantitative decision-theoretic rough sets(GMDq-DTRS). Firstly, we define upper
and lower approximations of generalized multigranulation double-quantitative rough sets by introducing
upper and lower support characteristic functions. Then, important properties of two kinds of GMDq-DTRS
models are explored and corresponding decision rules are given. Moreover, internal relations between the
two models under certain constraints and GMDg-DTRS and other models are explored. The definition of
the approximation accuracy in GMDq-DTRS is proposed to show the advantage of GMDq-DTRS. Finally,
an illustrative case is shown to elaborate the theories advantage of GMDq-DTRS which are valuable to
deal with practical problems. Generalized multigranulation double-quantitative decision-theoretic rough

set theory will be more feasible when making decisions in real life.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rough set theory, proposed by Pawlak in his seminal paper
[21], is a new mathematical tool for processing uncertain informa-
tion. Correlational studies spread across many fields [31,48], such
as artificial intelligence, machine learning, neural computing, data
mining, cloud computing, information security, knowledge discov-
ery, internet of things, biological information processing and so on.

Compared with classical set theory, Pawlak’s rough set theory
does not require any transcendental knowledge about data, such
as membership functions of fuzzy sets, or probability distribution
[7,8,39]. The basic idea of rough sets is to describe a concept
by the upper and lower approximate definable sets. The lower
approximation consists of elements whose equivalence class is
completely contained in the concept and the upper approxima-
tion is made up of elements whose equivalence class is partially
contained in the concept. Without considering intersection degree,
so rough sets have no fault tolerance capability. A large number
of generalized models have been put forward, such as the grade
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rough set model(GRS) [44], the rough set model based on toler-
ance relation [9,37], the dominance-based rough set model [2],
the fuzzy rough set model and the rough fuzzy set model [1] and
so on. Particularly, many probabilistic rough set models are pre-
sented. Wong et al.[32] put forward the definition of probabilistic
rough sets by the introduction of probability approximation spaces
into rough sets. Pawlak et al [22] proposed a model of probabilis-
tic approaches versus the deterministic approach. Yao et al.[46]
presented the decision-theoretic rough set (DTRS) based on condi-
tional probability and two parameters, which provides reasonable
semantic interpretation for decision-making process and gives an
effective approach for selecting the threshold parameters. Ziarko
[50] constructed the variable precision rough set model when
the sum of two parameters is equal to 1. Slezak studied the
Bayesian rough set model [28]. Herbert and Yao [4] explored the
game-theoretic rough set model by combining game theory with
decision making. Yao et al. [49] constructed a model of web-based
medical decision support systems based on DTRS model. Liu
et al. [10] proposed a multiple-category classification approach
with decision-theoretic rough sets, which can effectively reduce
misclassification rate. Yu et al. [45] studied a automatic method of
clustering analysis with the decision-theoretic rough set theory. Jia
[5,6] raised an optimization problem and attribute reduction about
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DTRS model under considering the minimization of the decision
cost. Yao et al. [43] constructed a model of web-based medical
decision support systems based on DTRS model. Liu et al. [11] pro-
posed a method of policy analysis with three-way decisions. Zhao
et al. [53] made an intensive study of email information filtering
system by using three-way decisions.

In general, the DTRS model mainly describes approximate
spaces in terms of relative quantitative information. The GRS
model [15,33,44] mainly describes approximate spaces from ab-
solute quantitative information by introducing absolute rough
membership. They are two fundamental expansion models which
have strong fault tolerance capabilities due to quantitative descrip-
tions, so none can be neglected. Hence, Zhang et al. [52] made
a comparative study of variable precision rough set model and
graded rough set model. Greco et al. [3] presented a generalized
variable precision rough set model using the absolute and relative
rough membership. Combining relative and absolute quantitative
information, Li and Xu [18] proposed a framework of double-
quantitative decision-theoretic rough sets (Dq-DTRS) based on the
Bayesian decision procedure and GRS model.

From the perspective of granular computing, either classical
rough sets or double-quantitative rough sets are based on single
indiscernibility relations. In many circumstances, however, a target
concept needs to be described through multiple binary relations
on the basis of a user’s requirements or goals of problem solving.
Therefore, Qian et al. [23-25] introduced multigranulation rough
set theory(MGRS). Multigranulation theoretical framework has
been greatly enriched, and a lot of generalized models about
multigranulation have also been put forward and deeply studied.
Wu and Leung [30] proposed a formal approach to granular
computing with multi-scale data decision information systems.
Raghavan and Tripathy [26] explored topological properties of
multigranulation rough sets for the first time. Xu et al. [33-
37] considered variable, fuzzy and ordered multigranulation rough
set models, respectively. Liu and Miao [14] presented a multi-
granulation rough set method in covering contexts. Liang et al.
[17] established an efficient feature selection algorithm with a
multi-granulation view. She et al. [27] deeply studied explored
topological structures and properties of multigranulation rough
sets. Considering the principle of the minority subordinate to the
majority, Xu [38] proposed the generalized multigranulation rough
set model(GMGRS). In the multigranulation rough set theory, each
of various binary relation determines a corresponding information
granulation, which largely impacts the commonality between each
of the granulations and the fusion among all granulations. Qian
et al. [30] therefore introduced the idea of multigranulation into
DTRS, and further proposed three kinds of the multigranulation
DTRS model. And Li and Xu [19,20] studied the multigranulation
DTRS in an ordered information system.

In fact, there are so many factors need to be considered in
the process of making decisions, and every aspect taken into ac-
count is unpractical in terms of time, energy, money and material
resources. So the whole decision process is divided into model
partition. Each part makes decision according to required granula-
tions and the comprehension evaluation is finally made based on
the the principle of the minority subordinate to the majority. For
example, singing contest judges come from different industries,
which have their own aesthetic standards. A record company may
consider from an economic point of view. Music producers pay
more attention to the ability of expressing the soul of the music.
Then the winner is supported by majority people after the vote.
Decisions come from different granular structures, and each deci-
sion may have a deviation in terms of actual situation throughout
the process. Therefore, double-quantitative decision-theoretic
rough sets with strong fault tolerance capabilities are consistent
with real world situations, and more attention should be paid to

the theory. Meanwhile, it is necessary to introduce the idea of
generalized multigranulation into decision-theoretic rough sets.
Then we further emphasize comparative advantages of Dq-DTRS
and GMGRS, which can be illustrated from the following aspects:

+ Compared with classical decision-theoretic rough sets, Dq-DTRS
[18] exhibit strong double fault tolerance capabilities in terms
of both relative and absolute fault tolerance, and have further
advantage of completeness.

A generalized variable precision rough set model using the ab-
solute and relative rough membership [3] has been used ex-
tensively in the study of measures, reasoning, applications of
uncertainty and approximate spaces.

Considering the principle of the minority subordinate to the
majority, GMGRS [38] theory is a kind of information fusion
strategies through single granulation rough sets.

For some special information systems, such as multi-source in-
formation systems, distributive information systems and groups
of intelligent agents, the classical decision-theoretic rough sets
can not be used to data mining from these information systems,
but GMGRS can.

So the motivation of this paper is to explore double-quantitative
decision-theoretic rough sets theory in multiple granular struc-
tures. Then we develop a new multigranulation decision model,
called generalized multigranulation double-quantitative decision-
theoretic rough sets (GMDQ-DTRS). In accordance with the type of
the double-quantitative decision-theoretic rough sets, two kinds
of generalized multigranulation double-quantitative decision-
theoretic rough set models are constructed.

The rest of this paper is organized as follows. Section 2 pro-
vides a review of basic concepts of Pawlak’s rough sets, decision-
theoretic rough sets, double-quantitative decision-theoretic rough
sets and generalized multigranulation rough sets. In Section 3,
we define the lower and upper approximations of generalized
multigranulation double-quantitative decision-theoretic rough sets,
and discuss the basic relation among two kinds of GMDq-DTRS
models under certain constraints. Meanwhile, the comparison
between GMDg-DTRS and other models is made. The approxima-
tion accuracy in GMDqg-DTRS is proposed to show the advantage
of GMDqg-DTRS. In Section 4, an illustrative case was presented
to interpret the theory and advantage of GMDq-DTRS. Finally,
Section 5 gets conclusions.

2. Preliminary

In this section, we provide a review of some basic con-
cepts such as rough sets, decision-theoretic rough sets, double-
quantitative decision-theoretic rough sets, generalized multigranu-
lation rough sets.

2.1. Pawlak’s rough sets

Suppose U be a non-empty finite universe and R be an equiv-
alence relation of U x U. The equivalence relation R induces a
partition of U, denoted by U/R = {[x]g|x € U}, where [x]g repre-
sents the equivalence class of x with regard to R. Then (U, R) is the
Pawlak approximation space. For an arbitrary subset X of U, the
lower and upper approximations of X are defined as follows [21]:

R(X) = {x e Ul[x]g n X # 0} = U{[x]rl[x]g N X # &},
R(X) = {x e Ul[x]r < X} = U{[x]rl[x]r < X}.

And pos(X) = R(X). neg(X) =~ R(X).,bnd(X) = R(X) —R(X) are
called the positive region, negative region, and boundary region of

X, respectively. Objects definitely and not definitely contained in
the set X form positive region pos(X) and negative region neg(X).
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Objects that may be contained in the set X constitute boundary
region bnd(X).

Uncertainty measures which can provide new viewpoints for
analyzing data is a key topic in rough set theory. The approxi-
mation accuracy proposed by Pawlak provides the percentage of
possible correct decisions when classifying objects by employing
the attribute set R. Let DS = {U, AT UDT,V, f} be a decision system,
where U is a nonempty finite universe; AT is the set of condition
attributes and DT is the set of decision attributes; V is the union
of attribute value domain, i.e., V = UgcaruprVa; and f: U x {ATUDT}
— Vis an information function, i.e., Ya € ATUDT, x € U, that f(x, a)
€ Vg, where f(x, a) is the value of the object x about the attribute
a. Let U/DT ={Y;,Y,,---,Yn} be a classification of universe U, and
R be an attribute set. Then the approximation accuracy of U/DT by
R is defined as
Y vieusor IR(YD)]
> y,eusp RO

Decision-theoretic rough sets proposed by Yao give a way about
how to make decisions under minimum Bayesian expectation risk.
Based on the idea of three-way decisions, decision-theoretic rough
sets use a state set 2 and an action set A to describe the decision-
making process [39-42]. Q = {X, X} indicating that an object is in
a decision class X and not in X. The set of actions with respect to
a state is given by A = {ap, ag, ay}, where ap, ag and ay represent
three actions about deciding x € pos(X), deciding x € bnd(X), and
deciding x € neg(X), respectively. Let App, Agp and Anp denote the
losses caused by taking actions ap, ag and ay, respectively, when
an object belongs to X; and Apy, Agy and Ayy denote the losses
incurred for taking the same actions when the object does not
belong to X.

Given the loss function, the expected loss associated with tak-
ing the particular actions for the objects in [x]z can be expressed
as:

R(ap|[x]g) = AppP(X|[X]r) + ApnP(XC|[X]R):

R(ag|[x]r) = AspP(X|[X]r) + AenP(XE|[X]r):

R(ay[X]r) = AnpP(X|[X]g) + ANNP(XC|[X]R).

where P(X|[x]r) = |X N [x]r|/|[x]r] represents condition probability
of x with regard to X and P(XC|[x]gr) =1 —P(X|[x]r). |+| denotes
the cardinality of a set.

By Bayesian decision procedure, minimum-risk decision rules
are displayed as:

(P) If R(apl[x]g) < R(apl[x]r) and R(ap|[x]g) < R(anl[x]g), decide x
€ pos(X);

(B) If R(agl[x]r) =< R(ap|[x]r) and R(ag|[x]) = R(an|[x]g), decide x
€ bnd(X);

(N) If R(anl[x]r) = R(ap|[x]g) and R(ayl|[x]g) < R(apl|[x]g), decide
x € neg(X).

According to actual situations, it is a reasonable hypothesis that
the cost of pos(X) is smallest and the cost of pos(X) and bnd(X) are
strictly smaller than the cost of neg(X) when x € X, the reverse of
the order of loss is used for x € XC, namely, App < Agp < Anp and
ANN < Apy < Apy. Then we can rewrite above rules as follows:

(P) If P(X][x]g) > « and P(X|[x]g) > y, decide x € pos(X);

(B) If P(X|[x]g) < « and P(X|[x]r) = B, decide x € bnd(X);

(N) If P(X|[x]g) = B and P(X|[x]g) < v, decide x € neg(X).

Where parameters «,  and y are defined as:

ag(U/DT) =

o — ApN — Apn B ABN — ANN )
(Apn — An) + (Ap — App)’ (Agn — Ann) + (Anp — Agp)”
ApN — ANN

V= (Apn — ANN) + (Anp — App)

If a loss function further satisfies the condition: (Anp—
App) (Apy — Apn) = (Agp — App) (Apy — Ann), then we can get 0 < B
< ¥ < a < 1. DTRS has the following decision rules:

(P) If P(X|[x]g) > «, decide x € pos(X);

(B) If B < P(X|[x]g) < «, decide x € bnd(X);

(N) If P(X|[x]g) < B, decide x e neg(X).

Meanwhile, we can get the probabilistic approximations,
namely the upper and lower approximations of the DTRS model:

R(a,ﬂ)(x) = {x e UIP(X|[x]r) > B}:
R pX) = {x e UIP(X|[x]r) = a}.

If Ry g)(X) = R(avﬂ)(X), then X is a definable set, otherwise X
is rough. If o = 1, 8 =0, then Ry g)(X) = R(X), R(y p)(X) = R(X).
Therefore, the DTRS model is a generalization of Pawlak’s model.

Here,  pos g)(X) =R py(X).  neg pgy(X) =~ Ry g)(X),
bnd, gy(X) :E(aﬁ)(X) — Ry p)(X) are the positive region, nega-
tive region and boundary region of X, respectively.

2.2. Generalized multigranulation rough sets

Generalized multigranulation rough sets are different from the
classical model, because the former is constructed on the basic of a
family of indiscernibility relations instead of single indiscernibility
relation. Considering the principle of the minority subordinate to
the majority, generalized multigranulation rough sets use a level
of information ¢ € (0.5, 1] to select objects [38].

Let I = (U,AT,V,F) be an information system, where U is a
nonempty finite universe; AT is a set of condition attributes; V is
the union of attribute value domain, i.e, V =UgaVa; F: U x A —
V is an information function,i.e., Va € A, x € U, that F(x, a) € V,,
where F(x, a) is the value of the object x about the attribute a. Un-
less otherwise specified, all information systems in this paper are
analogous to that defined above.

Suppose an arbitrary subset A; of a condition attribute set AT,
where i=1,2,---,s(s <24T), ¢ € (0.5, 1]. For an arbitrary subset
X of U, the lower and upper approximations of Xwith respect to
> 1 A; can be defined as

S
GMys , (X) = {x eU: (Z(l —sﬁx(x)))/s >1 —(p},

i=1

i=1

S
GMys 5, (X) = {" cU: (Z%ﬁ"@)/s > <p},

respectively, where SQ”(X) is support characteristic function of x
€ U with respect to concept X under A;; if[x]s, € X, then SQ" x) =

1, else SQ" (x) = 0. X is called a definable set with respect to Zf;lAi
if and only if GWZS 4 X) = GMZS 4 (X); otherwise X is called a
i=1"% i=1"1

rough set with respect to Zis=1 A;. ¢ is called a level of informa-
tion with respect to Zle A;. Positive region pos(X), negative region
neg(X), and boundary region bnd(X) are defined as follows:

pos(X) = GMy-s , (X): neg(X) =~ GMys , (X):
bnd(X) = GMys , (X) = GMys , (X).

2.3. Double-quantitative decision-theoretic rough sets

Considering absolute quantitative information in the Bayesian
decision procedure of the DTRS model, two fundamental Dq-DTRS
models (DqI-DTRS and DqII-DTRS) are proposed [18]. In the fol-
lowing, it should be point out that 0 < k < |U|, where |U| is the
cardinality of U.

The first kind of double-quantitative decision-theoretic rough
set (DqI-DTRS) is denoted by (U.R(y g).Ry). where Ry g, and R
are the approximation operators [17]. For an arbitrary subset X of U
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can be characterized by a pair of upper and lower approximations
which are

R pX) = {x c UIP(X|[x]r) > B};
RyX) = {x e U] |[x]r| - [[x]g N X| < k}.

and the positive region, negative region, upper and lower boundary
region of (U, R, g), Ry) are defined as follows:

pos (X) = Ria.p) (X) NRe(X); neg (X) =~ (R, (X) URL(X));
Ubn' (X) = Rig.p)(X) = Re(X); Lbn' (X) = Ry(X) — R ) (X),

naturally, we have the followng decision rules:
(P)) If PX|[xJg) > B, [Ix]r| — |[x]g N X| < k. decide x e pos' (X);
(N If PXI[x]R) < B, |[x]g| — [[x]g N X| > k. decide x e neg (X);
(UB) If PX|[x]R) > B. |[xIr] = |[x]r N X| > k, decide x € Ubn' (X):
(LB) If PX|[x]g) < B |[xIr] = |[x]r N X| < k, decide x e Lbn' (X).
The second kind of double-quantitative decision-rough set
(DqII-DTRS) denoted by (U,Ek,ﬁ(mﬂ)) is defined by using approxi-
mation operators R, and R (a, g Where the core mapping are pre-
sented by the following approximations:

Re(X) = {x e U[|[xIx N X| > k}; Rig. g, (X) = {x € U| P(X[[x]g) = &}

Accordingly, the positive region, negative region, upper and
lower boundary region of (U, Ry, R, g)) are stated as follows:

pos’ (X) = Re(X) N Ry g, (X): neg' (X) =~ (Ri(X) UR 4 5,(X)):
Ubn' (X) = Re(X) — Ry 5)(X): Lbn" (X) = R 5, (X) — R (X).

Naturally, we have the decision rules:
Py If PIX|[x]g) = o, |[X]gNX| > k, decide x € pos” (X);
(N") If P(X|[x]g) < @, |[x]gNX] < k, decide x € neg” (X);
(UB") If P(X|[X]g) < @, |[x]gNX| > k, decide x e Ubn" (X);
(LB") If P(X|[x]r) = @, |[X]gNX| < k, decide x e Lbn" (X).

3. Generalized multigranulation double-quantitative
decision-theoretic rough sets

DqI-DTRS and DqlI-DTRS introduce a pair of relative and abso-
lute quantitative measures into the classical model. They have id-
iographic quantitative semantics and strong double fault tolerance
capabilities, and can adapt to complex environments. In many real
applications such as multi-source data analysis, knowledge discov-
ery from data with high dimensions and distributive information
systems, the multigranulation version of Dq-DTRS will be very de-
sirable when decision-theoretic rough sets are applied to these
cases. In this section, we will establish a generalized multigranu-
lation double-quantitative decision-theoretic rough set framework.
In the following, it should be point out that k (k is a non-negative
integer) represents the grade of overlap between an equivalence
class and a set to be approximated, «; and f8; represent parame-
ters of the DTRS model.

3.1. The first kind of generalized multigranulation double-quantitative
decision-theoretic rough set

According to the literature [38], we know that the classical gen-
eralized multigranulation lower approximate consists of all objects,
whose number of granulations satisfied x € A ;(X) not greater than
s@, and the upper approximation consists of all objects, whose
number of granulations satisfied x € A;(X) greater than s(1 — ¢).
Combining the above idea, the lower and upper approximations of
generalized multigranulation double-quantitative rough sets shown
as following.

Definition 3.1. Let [ = (U, AT,V,F) be an information system, A; C
AT,i=1,2,---,s(s <24T), ¢ € (0.5, 1]. In the first kind of general-
ized multigranulation double-quantitative rough set(GMDQIRS), the

lower and upper approximations of an arbitrary subset X with re-
spect to Y5 , A; can be defined as

S
GMys 5, (0 = (x U] (S USIF(0)/s > 1- ),
i=1

S
GMys , (X) = {xeU| QLS (0)/s = ¢,
i=1

respectively, where USIQ" (x) is the first kind of upper support char-
acteristic function of x € U with respect to concept X under A;,

1, if P(X|[x]a,) > Bi:

0, other. 1)

USIY (x) = {

And LSIQ" (x) is the first kind of lower support characteristic func-
tion of x € U with respect to concept X under A;;

. 1, if = NX| <k
IS (x) = {O’ i [y | =[xl 0 X] < k )

¢ is called a level of information with respect to Zle A X is
called a definable set with respect to 2,5:1 A;, if and only if
W’Z_s A_(X):GM’ s , (X); otherwise, X is called a rough set
=17 i A
with respect to Y3 A;.
By the lower approximation Cﬂ%_g A (X) and upper approxi-
i

mation WIZL A (X), the positive region, negative region, upper
and lower boundary region of X are expressed as:
——
pos'(X) = GMys , (X) N Gﬂ’z 2, X0;
— I )
neg'(X) = ~ (GMys 5, (X) UGMY.c , (X));

Ubn'(X) = GMy-s 4 (X) — GM! ¢, 00;
Lbn'(X) = GMYs , (X) = Giss,,(X).

Combining the extreme types of optimism and pessimism, we
can get the first kind of optimistic and pessimistic multigranula-
tion lower and upper approximations of x with respect to ZleAi,
which can be expressed as follows:

OMys , (X) = (xeU| AL, (P(X|[xly) > B)):
OML: , (X) = fxe U] Vi (¥l — [[xla N X] < K)}

PMys 4 (X) = {xe U] Vi, (PXI[xla) > B)):
MIZLAI'(X) = {x e U] A ([x]a] = [[X]a, N X] = k)}

and expressions of other regions are analogous to that used above.
Considering the relationship during optimistic, pessimistic and
generalized multigranulation ,the following conclusions are true.

Proposition 3.1. Let [ = (U,AT,V,F) be an information system, A; C
AT,i=1,2,---,s(s < 24T). For an arbitrary subset X of U, the follow-
ing conclusions hold:

PM! X) c GM! X) € OM! X),
PMs , ( )_7251&( ) € OMys , (X)

i1 A i= =14

—— —
GMZ,-S=1 A X) c PMZI_5=1A', (X).

WIZ,‘L Aj X) <

Proof. It can be easily verified by definitions of generalized, opti-
mistic and pessimistic multigranulation double-quantitative rough
sets.

Considering the relationship between the multigranulation and
single granular structure, we have the following conclusions. O
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Proposition 3.2. Let [ = (U,AT,V, F) be an information system, A; <
AT,i=1,2,---,s(s < 24T). For an arbitrary subset X of U, the follow-
ing conclusions hold:

71 —_—

OMys |4, (X) € Aigay ) (X), OMys  (X) 2 A (X),

— —
PMys  4,(X) 2 Ai(ay ) %) PMs (X € A3 (X).

Proof. The result holds trivially according to definitions of opti-
mistic and pessimistic multigranulation double-quantitative rough
sets.

Considering the relationship between the multigranulation
and all the single granular structure, the following conclusions
hold. O

Proposition 3.3. Let [ = (U,AT,V, F) be an information system, A; <
AT,i=1,2,---,s(s < 24T). For an arbitrary subset X of U, we have

71 JE—
OMys | 4, (X) = Mt A p) X OMs 1, (X) = Uiy A3 (X0,
7’ —
PMys | 4,(X) = Uit Aige, ) 00 PMs () = Mg Ay (X).

Proof. The assertion follows immediately from definitions of opti-
mistic and pessimistic multigranulation double-quantitative rough
sets.

Based on the idea of three-way decisions and definition of the
first kind of the generalized multigranulation double-quantitative
rough set, we have the decision rules as follows: [

Rules 3.1. Let I= (U,AT,V,F) be an information system, A; C
AT,i=1,2,---,s(s < 24T). For an arbitrary subset X of U, decision
rules can be expressed as follows:

(P If |A;: P(X|[x]a) > Bil > s(1 =), [|A; 2 |[x]a] — [[X]a, 0
X| < k| = sg, decide x € pos'(X);
(NN If A - PKX|[X1a) > Bil <51 =), |A; 2 |[x]a] — [[X]a, 0

X| < k| < se, decide x e neg'(X);

(UB") If |A;: P(X|[X]a) > Bil >s(1 =), |A;:|[x]a] = |[X]a, 0
X| < k| < s¢, decide x € Ubn!(X);

(LB') If |A;: P(X[[x]a) > Bil <s(1—9), |A;: |[x]a| = |[X]4, 0
X| < k| = sg, decide x e Lbn!(X).

According to rules 3.1, if the number of granulations satis-
fying P(X|[[x]s,) > B; is greater than s(1-¢), and the number
of granulations satisfying|[x],| — [[x]s, N X| < k is not smaller than
s@, decide x € pos!(X); if the number of granulations satisfy-
ing P(X|[x]s,) > B is not greater than s(1—-¢), and the num-
ber of granulations satisfying |[x]4,| — [[x]4, N X| < k is smaller than
s@, decide x e neg/(X); if the number of granulations satisfying
P(X|[x]a,) > B; is greater than s(1 —¢), and the number of gran-
ulations satisfying [[x]4,| — [[X]s, ' X| < k is smaller than sg, decide
x € Ubn!(X); if the number of granulations satisfying PX[[x]a,) > Bi
is not greater than s(1 — ¢), and the number of granulations sat-
isfying |[x]4,| — |[x]a, N X| < k is not smaller than sg, decide x e
Lbn!(X).

The optimistic multigranulation rough set only need one gran-
ular structure to satisfy with corresponding relationship between
equivalence class and the approximated target. Combining the idea
of optimism, we can obtain decision rules, which are

(P If |A; : P(X[x]a) > Bil =s, |A; t X4, = |Ix]a, 0 X[ < k| = 1,
decide x e pos!(X);

(NI |A; - P(X|[X]a,) < Bil = 1, |A; 2 [[X]a, | = |[X]a, N X| > K| =5,
decide x € neg'(X);

(UB)If |A; : P(X|[x]a,) > Bil =s. |A; t [[x]a| = I[X]a, N X] > K| =S5,
decide x € Ubn!(X);

(LB') I A;: PXIIXIa) < Bil = 1. 1A [IXIa | - |[x]a N X < k| =
1, decide x € Lbn!(X).

Particularly, if all granulations satisfy P(X|[[x]s,) > fB;, and at
least one granulation satisfies |[x]y,| - |[x]s, N X| <k, decide x
e pos!(X); if at least one granulation satisfies P(X|[x]a) < B,
and all granulations satisfy |[x]s, | —|[x]s, NX| > k., decide x e
neg!(X); if all granulations satisfy P(X|[x]a) > B; and [[x]a] -
[[X]a; N X| > k, decide x e Ubn!(X); if at least one granula-
tion satisfies P(X|[x],) < B; and |[x]| — |[x]s, NX| <k, decide
x € Lbn!(X).

Based on SCED (seeking common ground while eliminating dif-
ferences) strategy, the pessimistic multigranulation rough set re-
quire all granular structures to satisfy with the corresponding re-
lationship between equivalence class and the approximated target.
Combining the idea of pessimism, we can gain the following deci-
sion rules:

(P)) If |A; : P(X[[x]a) > Bil = 1. |A; : [[X]a | = [[x]a, N X] < k| =3,
decide x € pos!(X);

(N If A; : PXI[X]a) < Bil =s. 1A; 2 [[x]a,| = [[x]a, 0 X| > K| = 1,
decide x € neg!(X);

(UB) If |A; : P(X[x]a) > Bil = 1, |A; 2 |[X]a,| = |[X]a, N X| > K| =
1, decide x € Ubn!(X);

(LB') If |A; : P(X[[x]a,) < Bil =, 1A; : [X]a,] = [[x]a, 0 X| < k| =35,
decide x e Lbn!(X).

Correspondingly, if at least one granulation satisfies P(X|[x]s,) >
Bi, and all granulations satisfy [[x]a|— [[x]s, N X| <k, decide
x e pos(X); if all granulations satisfy P(X|[x]4,) < B;, and at
least one granulation satisfies |[x]s | — |[x]s, N X| > k. decide x
e negl(X); if at least one granulation satisfies P(X|[x]Ai) > Bi
and |[[x]4,| — [[x]s; N X| > k, decide x € Ubn!(X); if all granu-
lations satisfy P(X|[x]s,) < B; and |[[x]s| — |[x]s, N X| <k, decide
x e Lbn!(X).

In order to measure the classification ability, the definition of
the approximation accuracy under multiple granular structures is
proposed.

Definition 3.2. Let DS = (U,AT UDT,V,F) be an information sys-
tem, A; CAT,i=1,2,---,s(s<24T). And U/DT ={Y;.Y,, -, Yp}
be a classification of universe U. In the first kind of generalized
multigranulation double-quantitative rough set(GMDqI-DTRS), the
approximation accuracy of U/DT with respect to Zis:] A; is defined
as

> Yieu,pT |67MIZ§:1 a2 (YD
71 bl
Yveup |GMys 4 (Y1)

crys , (U/DT) =

where W'ZLAI- ) ={xeUl (i, USIQf (*x)/s>1-¢} and
My, (%) = {x € U] (S IS (0)/5 = ¢}

3.2. The second kind of generalized multigranulation
double-quantitative decision-theoretic rough set

First of all, we present the definition of the second kind of
lower and upper approximations.

Definition 3.3. Let [ = (U,AT,V, F) be an information system, A; C
AT,i=1,2,---,s(s < 24T). In the second kind of generalized multi-
granulation double-quantitative rough set (GMD(IIRS), the lower
and upper approximations of an arbitrary subset X with respect
to Y3 ; A; can be defined as
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S
xeU: QO USIE(X)/s>1- g}
i=1

CMys 5, (X) =

S
xeU: Q LSIF(X)/s = ¢}

i=1

GM" A X) =

respectively, where USIIQ" (x) is the second kind of upper support
characteristic function of x € U with respect to concept X under A;,

) 1, if NX|>k;

And LSIIQ" (x) is the second kind of lower support characteristic
function of x € U with respect to concept X under A;,

LSIEY (x) = { 1Pl = )

@ is called a level of information with respect to 37 ;A;. X is
called a definable set with respect to Zis:l A;, if and only if
GMZS 4 (X) = M’i A otherwise X is rough.

By the lower approximation GM" (X) and upper approxi-

TR A

mation GMZ_s ) 4 (X), the positive region, negative region, upper
i=1"%

and lower boundary region of X are as following:

pos” (X) = GMys ,, () N GMLLs , (X);

neg! (X) = ~ (GMys , (X) UGML;  (X));

Ubn''(X) = GMys 5 (X) - GML, , (X);

Lbn' (X) = GMYs | (X) — GMys , (X).

Then the second kind of optimistic and pessimistic multigranu-
lation lower and upper approximations of X with respect to Z,-S=1 A
can be stated as follows:

OMys 4 () = xeU| AL, (IXly, NX| > k));
OfM%,LA,-(X) ={xeU| vi; (PX[[x]a) = o)}

PMys 5 (X) = (xeU| V&, (Xl NX| > b)):
PMgs , (X) = {x U| AL; (P(X|[x]a) = o)}

and other regions can be obtained by the same way like above.

From the definitions of generalized, optimistic and pessimistic
multigranulation double-quantitative rough set, there are proposi-
tions can be induced as follows:

Proposition 3.4. Let [ = (U,AT,V,F) be an information system, A; C
AT,i=1,2,---,s(s < 24T). For an arbitrary subset X of U, the follow-
ing conclusions hold trivially.

Il | Anpl! =il
PMZfl 5 SGMYs |, COMLs . OMys 4 € GMys , C
PMZ,-S:1 A

When considering the relationship between multiple granular
structures and single granular structure, the following conclusions
hold trivially, namely,

OMys 4, (X) S A (X). OM" 4, %0 24,X),

PMZs 2, (X) 2 A (X)), PM" A 00 S A o (.

When thinking about the relatlonshlp between multiple granular
structures and the set of single granular structure, the following con-
clusions hold obviously:

OMIZS 200 = N A0, OMYs 00 = ULy Ay ) 0.

PMigs 4 (X) = Uy Ay ). PMLs (0 = Ny A, 5 (0

Based on the idea of three-way deastons and definition of the
second kind of the generalized multigranulation double-quantitative
rough set, we have the following decision rules:

Rules 3.2. Let = (U,AT,V,F) be an information system, A; C
AT,i=1,2,---,s(s < 24T). For an arbitrary subset X of U, decision
rules can be expressed as follows:

(P If |A; = [[x]a, N X| > k| > s(1 — @), |A; : P(X|[x]4,) = o] = s,
decide x e pos(X);

(NTYIF |A; @ |[X]a, N X| > K| <s(1— @), A : P(X[[X]a) = &l < sp,
decide x e neg(X);

(UBT) If |A; 2 [[X]a, N X] > k| > s(1 — @), |A;: P(X|[x]a) = o] <
s, decide x e Ubnl(X);

(LB") If |A; : [[x]a, N X| > kl <s(1—¢), |A;: P(X|[X]a) = o] =

s, decide x e Lbn'(X).

According to rules 3.2, if the number of granulations satisfying
[[x]a; N X| > k is greater than s(1 —¢), and the number of granu-
lations satisfying P(X|[x]Ai) > ¢; is not smaller than sg, decide x
e posl(X); if the number of granulations satisfying |[x], N X| > k
is not greater than s(1 — ¢), and the number of granulations sat-
isfying P(X|[x]z) = «; smaller than sp, decide x € neg'(X); if the
number of granulations satisfying |[x]s, NX| > k is greater than
s(1 — ¢), and the number of granulations satisfying P(X|[x]Al,) > o
is smaller than s¢, decide x ¢ Ubn'(X); if the number of granu-
lations satisfying |[X]Ai NX| > k is not greater than s(1 —¢), and
the number of granulations satisfying P(X|[x]4,) > ¢; is not smaller
than sg, decide x e Lbn/(X).

When thinking over the idea of optimism, we can obtain deci-
sion rules as follows:

(PTYIf |A; : [[x]a, N X| > k| =5, |A; : P(X|[x]a,) = o > 1, decide x
e pos'(X);

(NTY If |A; @ |[x]a, N X] < k[ = 1, |A; 1 P(X|[X]4,) < | =5, decide
x € negl(X);

(UB") If |A; 1 |[X]a, N X| > k| =s, |A; : P(X|[x]g) < o] =S, decide
x e Ubn!l(X);

(LB") If |A; = [[X]a, N X| < k| = 1, |A;: P(X|[x]g) = o] > 1, decide x
e Lbn(X).

Accordingly, if all granulations satisfy |[x], NX|>k, and at
least one granulation satisfies P(X|[x],) > ;, decide x € pos(X);
if at least one granulation satisfies |[X]Ai NX| <k, and all granula-
tions satisfy P(X|[x]s,) < o;, decide x e neg'(X); if all granulations
satisfy |[x]a, N X| >k and P(X|[x]s,) < o;, decide x e Ubn'(X); if
at least one granulation satisfies |[x]4, N X| < k and P(X|[x]4) > &;,
decide x e Lbn!(X).

When considering the idea of pessimism, we can obtain deci-
sion rules as follows:

(PTYIE |A; = [[x]a, N X| > k| = 1, |A; : P(X|[x]4,) = ;| =5, decide x
e pos(X);

(NTY If |A; @ |[x]a, N X| < k| =5, |A; 1 P(X[[X]4,) < o = 1, decide
x e negl(X);

(UB") If |A; = [[X]a, N X] > k| = 1, |A; : P(X|[x]a,) < @] = 1, decide
x € Ubn!l(X);

(LBU)If [A; = [[x]y N X| < k| =5, |A; : P(X[[x]a,) = ;] =Ss, decide x
e Lbn!(X).

Correspondingly, if at least one granulation satisfies |[X]Ai nX| >
k. and all granulations satisfy P(X|[x]s,) > ;. decide x e pos(X); if
all granulations satisfy |[x]s, NX| <k, and at least one granulation

satisfies P(X|[x]z) < a;, decide x € neg!(X); if at least one granula-
tion satisfies [[x]y, N X| > k and P(X|[x]s,) < «;, decide x € Ubn'(X);
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if all granulations satisfy |[x]4, N X| < k and P(X|[x]s,) > «;, decide
x e Lbn'l(X).

The Dq-DTRS model degenerates to the Pawlak model when
a=1,=0,k=0. So we can known two kinds of the general-
ized multigranulation double-quantitative decision-theoretic rough
set are all equivalent to the generalized multigranulation rough set
when «; =1, §; = 0, k = 0. Certainly, the two kinds of the general-
ized multigranulation double-quantitative decision-theoretic rough
set are also equivalent. Especially,optimistic and pessimistic multi-
granulation double-quantitative decision-theoretic rough sets de-
generate to the optimistic multigranulation rough set and pes-
simistic multigranulation rough set.

At the same time, the uncertainty measure of the second
kind of generalized multigranulation double-quantitative rough
set(GMDgqII-DTRS) is also proposed.

Definition 3.4. Let DS = (U,AT UDT,V,F) be an information sys-
tem, A; CAT,i=1,2,---,s(s<24T). And U/DT ={Y1.Y5,---.Ym}
be a classification of universe U. In the second kind of generalized
multigranulation double-quantitative rough set(GMDqII-DTRS), the
approximation accuracy of U/DT with respect to Zle A; is defined
as

ZYiEU/DT |@%le A (Yl) |
71 )
ZY,EU/D |GMlzf:1 A; (Yl
where W%is:] a4 YD ={xeU: 3, USIIQ" x)/s>1—-¢} and

GMYs , () = {xeU: (T ISR (0)/s = o).

Uss o, (U/DT) =

3.3. Comparison

In the subsection, we deeply explored the relationship between
GMDqI-DTRS and GMDgqII-DTRS, the internal connection between
the generalized multigranulation double-quantitative decision-
theoretic rough set(GMDqg-DTRS) and the generalized multigran-
ulation rough set(GMRS), the inherent relations between GMDq-
DTRS and double-quantitative decision-theoretic rough set (Dq-
DTRS), and the relationship between GMDq-DTRS and variable pre-
cision rough set(VRS).

(1) The relationship between GMDqI-DTRS and GMDqII-DTRS

According to decision-theoretic rough set, if the foss function
satisfies A};P < )‘.EP < )\}VP )LEVN <Aby <ALy and (AL, — AL, (AL, —
Mn) < (A\p — App) (A — Apy). we have a; > B, i=1,2,---,s. At
the same time, for the same k, we discuss the relationship between
the value of «; + B; and 1.

When o;+8i=1,
conclusions

i=1,2,---,s, there are following

(1) 1A; : PX[[X]4,) > Bil > s(1 — ). |A; 2 [[X]a; | = |[x]a, 0 X| < k| >

s¢
< [A; P~ X)|Xa,) = ol < 5@, 1A; = |[x]a, 0 (~X)] > k| <
s(1-g).

(2) 1A; : PX[[Xa,) > Bil =s(1 = @). |A; « |[x]a;| — |[x]a; N X] < k| <
S
< [A; 1 PU(~ X)|[X]a,) = ol = 5@, A; = |[x]a, 0 (~X)] > k| >
s(1—-g).

(3) 1A; : P(XI[X]a)) > Bil > s(1 — @), |A; : |[X]a;] = [X]a, N X] < kI <
s¢
& |A; : P>(~ X)[x]a) = il < 5@, |A; 2 |[x]a, 0 (~ X)| > K| >
s(1—-g).

(4) 1A;: PXI[x1a) = Bil =5(1 = ). 1A; 2 [[Xla | — |[x]a, N X| < kI >
sp

& 1A P((~ XI[X]a) = il = 59, |A; 2 [[x]a, 0 (~ X)| > K| <
s(1—g).

The reasoning process is stated as follows. According to «; +

Bi=1, itistruefori=1,2,.-- sthate; =1- B, and P(X|[x]4,) >
Bi.  lxlal =[xl nX| <k is equivalent to P(~X|[x]s) <
1 - Bi. ll[x]a, N (~X)| < k. So it is true that |A; : P(X|[x]4) > Bil >
s(1 =), |A; : [[x]a,| = [[X]a,nX] <kl =s¢ is  equivalent to
[Ai : P(~ X[[x]a) <1 = Bil >s(1 =), |A; : [[x]a, N (~X)| < k[ = s¢.
By substituting «;=1-p8; into the Ilatter, we obtain
|A; 2 P(~ X|[x]a,) < ot > s(1 =), |A; 2 [[X]a, 0 (~ X)| < k| = s@.
At the same time, |A; : P(~ X|[x]4,) < o] > s(1 —¢) is equivalent
© |4 : P((~ X)llxly) = ol < s, and |A;  [[x], 0 (~ X)| =kl = ¢
is equivalent to |A; : |[x]s, N (~X)| > k| <s(1 —¢). Then the proof
of the first conclusion is now completed. Other conclusions can be
proved by the same method as employed in the first conclusion.

At above case, the loss function must satisfy (AL, — ALy) (AL, —
Abp) = (Abhy — ALy (AL — Aly). From above conclusions, we can
know that the accepted region of X in GMDqI-DTRS is equivalent
to the rejective region of ~ X in GMDqII-DTRS, the rejective region
of X in GMDqI-DTRS is equivalent to the accepted region of ~ X in
GMDqII-DTRS, the upper and lower delayed regions of X and ~ X
are identical for both GMDqI-DTRS and GMDqII-DTRS.

When «o;+8; <1, i=1,2,---,s, there are following conclu-
sions

(1) |A:: PKI[xIa) > Bil > 5(1 = @), A : |[x]a,| = |[x]a, nX| < Kl =

s¢
< 1A 1 P((~ X)|[x]a,) = il <s@. |A; 2 |[x]a, 0 (~ X)| > k| <
s(1—-g).

(2) 1A; : PX[[X]4) > Bil =s(1—@). |A; « |[x]a,| — |[x]a, N X[ < k| <
s¢
= A; 1 P((~ X)[x]a,) = il = s@. |A; « |[x]a, 0 (~ X)| > K| >
s(1—¢).

(3) 1A : PX[[Xa,) > Bil > s(1 — ). |A; 2 |[X]a, | = [[x]a, N X| < k| <
%
< A;i 1 P((~ X)[x]a,) = il <s@. |A; 2 |[x]a, 0 (~ X)| > k| >
s(1—-¢).

(4) |A; - PX[[X]a) > Bil =s(1 = @), |A; ¢ |[x]a;| = [[X]a, N X]| < k] =
s¢
= |A; 1 P((~ X)|[x]a,) = il = s@. |A; « |[x]a, 0 (~ X)| > K| <
s(1— ).

The analysis can be stated as follows. In accordance
with o;+f; <1, it is true for i=1,2,---,s that o; <1-8;,
and  P(X|[x]a) > Bi. |[x]a,| —|[X]a4, nX| <k is equivalent to
P(~X|[x]p) <1 =B ll[X]a,n(~X)| <k. So we can get that
A : P(X[[x]n) > Bil > s(1 = @), 1A; = |[X]a,] — [[x]a, N X| < K| =

N is equivalent  to |A; 2 P(~ X[[X]a) < 1= Bil >s(1
@) 1A; | [x]a, N (~ X)| < k| = se. At the same time,
|A; 2 P(~ X|[X]a) < 1= Bil >s(1-9¢) is equivalent to

[Ai : P(~ X[[x]a) = 1= Bil <sp , and |A;: [[X]a, N (~X)| <kl >
N is equivalent to [A; = [[xX]a, 0 (~X)| >k < s(1 —
¢). On the basis of «<1-p;, it is true that
A s P((~ X)|[x1a) = 4] < 5. A 2 |[x]a, 0 (~ X)| > Kl <s(1 - @)
implies  |A; : P(~ X[[x]a,) = 1= Bil <s@. |A; 2 [[X]a, 0 (~X)| > k| <
s(1 — ¢). Then the proof of the first conclusion is now completed.
Other conclusions can be proved by the same method as employed
in the first conclusion.

At above case, the foss function must satisfy (AL, — ALy) (AL, —
Abp) > (AL — AL (AL, — Aly). From above conclusions, we can
obtain that the rejective region and lower delayed region of X in
GMDqI-DTRS are contained in the accepted region and lower de-
layed region of ~ X in GMDqII-DTRS, respectively; the rejective re-
gion and upper delayed region of ~ X in GMDqII-DTRS are con-
tained in the accepted region and upper delayed region of X in
GMDqI-DTRS, respectively Table 1.
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Table 1
The relationship between GMDqI-DTRS and GMDqII-DTRS.

197

Cases relationships
ai+pi=1 pos'(X)=neg"(~X) neg (X)=pos'(~X) Ubn'(X)=Ubn"(~X) Lbn'(X)=Lbn"(~X)
ai+Bi <1  pos'(X)oneg( ~ X) neg'(X)cpos'( ~ X) Ubn!(X)2Ubn!( ~ X) Lbn!(X)cLbn"( ~ X)
a;i+Bi>1  pos(X)cneg'( ~ X) neg'(X)2pos"( ~ X) Ubn!(X)cUbn"( ~ X) Lbn!(X)2Lbn"( ~ X)
When o;+p;i>1, i=1,2,--.,s, there are following In the information system [= (U,AT,V,F), for an arbitrary
conclusions subset X of U, when o;=1,k=0, the second kind of up-
.. . Aj .

(1) 14 : PXI[x1a) > Bil > s(1 — @), 1A; < [[X]a | — I[X]a, X[ < K| = per support characteristic .functlon USIL (x) degenerates to char
sQ acteristic function 1-— Sﬁ'x (x) and lower support characteris-
= |A; : P((~ X)[x]a) = o] < s, [A;  |[x]a, N (~X)| > k| < tic function LSIIY(x) degenerates to support characteristic func-
s(1-g). . . . ——I —_

tion SA' x). Therefore, it is true that GMys , (X) = GM X),

(2) 1Ay : PXI[xLa) > Byl = 51— ). A< [Ixla,| = [[xla, N X] < K| < ®) rfa 00 = Mg 00
s@ GM; [(X)=GMys , (X) when a;=1.k=0. So GMDII-DTRS
< At P((~ X)|Ixla) = ol = s@, |A; = |[x]a, 0 (~ X)| > K| > is equ1valent to GMRS That is to say, GMDqII-DTRS is a general-
s(1-¢). ized model of GMRS.

(3) 1A;: P(X”X]A,-) > Bil >s(1 - ), |A; : |[X]A,-| - |[X]A,- NX| <kl < When «; < 1, k > 0, conclusions R, (X) € R(X) and R (@ )X)2
s¢ R (X) hold in the second kind of double-quantitative rough
?(1"31'(;0;3(“ X)llxla) = ail < s@. |A; 2 [[X]a, 0 (~ X)| > k| > set. Therefore, for the same ¢, it is true that GW;:S LX) <

(4) 1A PXI[XLg) > Bil =5(1 = @), A [ = [xlg, 0 XI <k = CMyg (0. QM (X) 2 GMyy  (X) when a; < 1, k > 0. S0
s¢ the posmve region of GMDqu DTRS is bigger than the positive re-
< |A; t P((~ X)[x]a) = o] = s, |A; = [[x]a, N0 (~ X)] > k| < gion of GMRS, the negative region of GMDqII-DTRS is bigger than
s(1-¢). the negative region of GMRS. Therefore, GMDqII-DTRS has a certain

The reasoning method analogous to that used above. At
above case, the foss function must satisfy (ALp — Abp) (Ahyp — ALp) <
(Apy — Apy) (Apy — Ajy)- Above all, we can understand that the ac-
cepted region and upper delayed region of X in GMDqI-DTRS are
contained in the rejective region and upper delayed region of ~ X
in GMDqII-DTRS, respectively; the accepted region and lower de-
layed region of ~ X in GMDQqII-DTRS are contained in the rejective
region and lower delayed region of X in GMDqI-DTRS, respectively.

Intuitively, internal relations of the two models are shown in
different cases as follows:

(2) The internal connection between GMDq-DTRS and GMRS

The internal connection between GMDg-DTRS and GMRS can be
clearly obtained by the following description.

Let I= (U,AT,V,F) be an information system, A; CAT,i=
1,2,---,5s(s < 24T). For an arbitrary subset X of U, when 8; =0,k =
0, the first kind of upper support characteristic function USIQ" (%)
degenerates to characteristic function psﬁfxoc) and lower sup-
port characteristic function LSI)/:" (x) degenerates to support char-
acteristic function SA i (x). Therefore, it is true that ﬁ/llzs A X) =
GMZS A X), GMZS (X) = A (X) when B;=0,k=0. So
GMDql DTRS is equ1valent to GMRS That is to say, GMDqI-DTRS
is a generalized model of GMRS. B B

Furthermore, when 8 > 0, k > 0, conclusions R, g)(X) < R(X),
R (X)2 R (X) hold in the first kind of double-quantitative rough
set. Therefore, for the same ¢, it is true that WZS A X) c
GMZS A X), GMZ,S, (X) DGM A (X) when 8 > 0, k > 0. So
the positive region of GMDql DTRS 1s bigger than the positive re-
gion of GMRS, the negative region of GMDqI-DTRS is bigger than
the negative region of GMRS. Accordingly, GMDqI-DTRS has a cer-
tain probability of error. In other words, GMDqI-DTRS inherits the
advantage of Dq-DTRS with a certain probability of error. Moreover,
for an information system DS = (U, AT UDT,V,F), the approxima-
tion accuracy of U/DT with respect to Zle A; in GMDqI-DTRS is
higher than the approximation accuracy of GMRS according to the
definition 3.2. Similar results can be obtained in the GMDqII-DTRS.

probability of error and the approximation accuracy of U/DT with
respect to ZL A; in GMDqII-DTRS is higher than the approxima-
tion accuracy of GMRS according to the Definition 3.4.

It is true that two kinds of the generalized multigranulation
double-quantitative decision-theoretic rough set are all equiva-
lent to the generalized multigranulation rough set when «; =
1, i =0,k = 0. Certainly, when ¢; = 1, 8; = 0, k = 0, the two kinds
of the generalized multigranulation double-quantitative decision-
theoretic rough set are also equivalent. Especially, optimistic and
pessimistic multigranulation double-quantitative decision-theoretic
rough sets degenerate to the optimistic multigranulation rough set
and pessimistic multigranulation rough set, respectively. When «;
<1, B; >0, k> 0, both GMDqI-DTRS and GMDqII-DTRS have a cer-
tain probability of error. Moreover, the approximation accuracy of
GMDq-DTRS is higher than the approximation accuracy of GMRS.
That is to say , the classification ability of GMDq-DTRS is bet-
ter than the classification ability of GMRS from the perspective of
the approximation accuracy. Therefore, GMDq-DTRS may be more
practical in daily life.

(3) The inherent relation between GMDq-DTRS and Dq-DTRS

For the level of information ¢, if XEWIZiIAI_(X) and x e

GM! (X ), then there is at least one granular structure A; which

YA
makes x R(ai,ﬂi)(X) and x € R i (X). Therefore, an object belongs
to the lower and upper approximations of GMDqI-DTRS implies
this object at least belongs to the lower and upper approxima-

tions of DqI-DTRS under the granular structure. Accordingly, if

X e GMZS A (X) and x e GMZ (X), then there is at least one

granular structure A; which makes X e E(O{j‘ B (X) and x € R ((X). In
other words, an object belongs to the lower and upper approxima-
tions of GMDqII-DTRS implies that this object at least belongs to
the lower and upper approximations of DqII-DTRS under the gran-
ular structure. However, an object belongs to the lower and upper
approximations of Dq-DTRS under one granular structure does not
imply that this object belongs to the lower and upper approxima-
tions of GMDq-DTRS. Viewed from the overall model, GMDq-DTRS
provides a more detailed characterization of approximate space.
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From the perspective of fusion, GMDq-DTRS is the information fu-
sion of many Dq-DTRS models.

(4) The relationship between GMDqg-DTRS and variable precision
rough set(VRS)

In the lower and upper approximations of rough set model, four
kinds of models can be obtained by considering relative quantita-
tive and absolute quantitative information, namely

(D The upper approximation is quantified by the relative quan-
titative information and the lower approximation is quan-
tified by the relative quantitative information. The for-
mula is expressed as R(X) = {x e UP(X|[x]r) > B},R(X) =
{x e UIP(X|[x]r) = a}.

@ The upper approximation is quantified by the absolute quan-
titative information and the lower approximation is quan-
tified by the absolute quantitative information. The for-
mula is expressed as R(X) = {x e U||[x]xNX]| > k},R(X) =
{x e UlllxIg| — |[x]rg N X] < k}.

(@ The upper approximation is quantified by the relative quan-
titative information and the lower approximation is quan-
tified by the absolute quantitative information. The for-
mula is expressed as R(X) = {x e U[P(X|[x]z) > B}.R(X) =
{x e UlllxIg| — |[x]r N X| < k}.

@ The upper approximation is quantified by the absolute
quantitative information and the lower approximation is
quantified by the relative quantitative information. The for-
mula is expressed as R(X) = {x e U||[x]g N X]| > k},R(X) =
{x e UIP(X|[X]g) = a}.

It is obvious that the first is the decision-theoretic rough set
model(DTRS), the second is grade rough set model(GRS), the third
is the first kind of double-quantitative decision-theoretic rough set
model(DqI-DTRS), and the fourth is the second kind of double-
quantitative decision-theoretic rough set model(DqllI-DTRS). It is
well known that the variable precision rough set(VRS) is a spe-
cial model of DTRS in which « + 8 = 1. It is evident that the vari-
able precision rough set is the model of relative quantitative in-
formation and Dq-DTRS is the model of relative quantitative and
absolute quantitative information by the combined consideration
of relative and absolute quantification in the lower and upper ap-
proximations. GMDq-DTRS is also a double-quantitative model by
the combined consideration of relative and absolute quantification
in the lower and upper approximations under multiple granular
structures. Therefore, from the perspective of quantization index,
GMDg-DTRS provides a more comprehensive characterization for
the approximate space than the variable precision rough set. From
granular structures, GMDq-DTRS provides a more detailed charac-
terization of approximate space than the variable precision rough
set.

(5) The comparison between GMDq-DTRS and other models

With the development of information technology, more and
more data is released every day, and the amount of data is more
and more large. One of the most urgent things is how to make full
use of data to make decisions. Based on the principle of the mi-
nority subordinate to the majority and the combination of relative
and absolute quantification, generalized multigranulation double-
quantitative decision-theoretic rough set(GMDQq-DTRS) theory may
provide a comprehensive decision method for mass data. It is well
known that GMDq-DTRS is a generalization of generalized multi-
granulation rough set(GMRS). Recently, there are a lot of research
about multigranulation rough set. Therefore, the detailed compari-
son between GMDq-DTRS and some models is made.

Feng et al. [29] explored variable precision multigranulation
fuzzy rough sets by using the maximal and minimal membership

degrees of an object with respect to a fuzzy set based on multi-
fuzzy tolerance relations and the decision theory of Type-1 variable
precision multigranulation fuzzy rough set was discussed. Their fo-
cus are variable precision multigranulation fuzzy rough sets and
decision-theoretic rough set. The emphasis of this paper are gener-
alized multigranulation and double-quantitative decision-theoretic
rough set.

Zhang et al. [51] established four kinds of constructive methods
of rough approximation operators from the view point of the union
and intersection operations of rough approximation pairs. From the
paper, we know that many rough sets(include optimistic and pes-
simistic multigranulation rough sets) are essentially direct appli-
cations of these constructive methods. Their focus are construc-
tive methods of rough approximation operators and multigranula-
tion rough sets. The emphasis of this paper is generalized multi-
granulation rough approximations which is a general multigranu-
lation rough approximations, and the study is based on double-
quantitative decision-theoretic rough set theory.

Li et al. [16] investigated the relationship between optimistic
and pessimistic multigranulation rough sets and concept lattices
via rule acquisition by the comparison and combination of rough
set theory, granular computing and formal concept analysis. Their
focus is the relationship of decision rules of optimistic and pes-
simistic multigranulation rough sets and the rules of concept lat-
tices. Our paper also study relationships, but they are the relation-
ship of GMDqI-DTRS and GMDqII-DTRS, the relationship of GMDq-
DTRS and GMRS, the relationship of GMDq-DTRS and other models.

Lin et al. [13] proposed the fuzzy multigranulation decision-
theoretic rough set and a comparative study between the fuzzy
model and Qian’s multigranulation decision-theoretic rough set
model was made. Their focus is decision-theoretic rough set. The
emphasis of this paper is the combination of decision-theoretic
rough set and grade rough set, namely the double-quantitative
decision-theoretic rough set. From the perspective of multi-source,
both Lin’s paper and ours provide methods for multi-source data
analysis.

Lin et al. [12] proposed a feature selection method by fusing
all individual feature rank lists which were obtained based on the
significance of features in different granular structures. In terms of
classification performance, the proposed method can effectively se-
lect a discriminative feature subset and perform as well as or bet-
ter than other popular feature selection algorithms. Their focus is
the feature selection by fusion the significance of features under all
granular structures. Considering the decisions fusion based on the
principle of the minority subordinate to the majority, the empha-
sis of this paper is exploration of the double-quantitative decision-
theoretic rough set model with strong fault tolerance ability under
granular structures.

Yang et al. [47] proposed naive and fast algorithms for updat-
ing the multigranulation rough approximations with the increas-
ing of the granular structures. The most important thing is the
fast algorithm based on the monotonic property of the multigran-
ulation rough approximations can effectively reduce the computa-
tional time when facing high dimensional data sets, traditional re-
duction and attribute clustering based reduction. It is mainly focus
on fast updating the optimistic and pessimistic multigranulation
rough approximations. The emphasis of this paper is the construc-
tion of a new model of generalized multigranulation rough approx-
imations based on the combined consideration of relative and ab-
solute quantification in the lower and upper approximations.

4. Case study and application
Compared with classical rough set theory, generalized multi-

granulation double-quantitative decision-theoretic rough sets have
a certain fault tolerance capability. Compared with the generalized
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Table 2
Cars data.
Cars  Design  Model  Color  Beauty  Cars  Design  Model  Color  Beauty
X 1 0 0 0 X1 1 1 0 0
X2 0 0 1 1 X12 0 1 2 1
X3 1 2 2 0 X13 2 0 1 0
X4 1 1 2 1 X14 0 0 2 0
Xs 1 0 0 1 X15 1 0 1 1
X6 2 2 2 1 X16 2 1 2 1
X7 2 1 1 0 X17 1 1 1 0
Xg 0 2 0 0 X18 0 1 1 0
Xg 2 2 1 1 X19 2 0 0 1
X10 0 2 1 1 X20 2 2 0 0
Table 3
Statistical results of car classes under the granular structureA;,
i) (Xl [Xla, | [xla, 0 X [Xla, nXI PX[[X1a,) (X4, | = [[x]a, N X]
(0,0) X2, 14 2 X2 1 1/2 1
(0,1) X218 2 X12 1 1/2 1
(0,2)  xs10 2 X10 1 1/2 1
(1,0) X515 3 X5, 15 2 2/3 1
(L) x4nw 3 X 1 1/3 2
(1,2)  x3 1 [ 0 0 1
(2,0) X319 2 X19 1 1/2 1
(2,1) X716 2 X16 1 1/2 1
(2,2)  Xs.920 3 X6, 9 2 2/3 1

multigranulation rough set, generalized multigranulation double-
quantitative decision-theoretic rough sets consider relative and ab-
solute quantitative information between the class and concept, so
the classification ability is better than GMRS from the perspec-
tive of the approximation accuracy. Meanwhile, compared with
the double-quantitative decision-theoretic rough set, generalized
multigranulation double-quantitative decision-theoretic rough sets
provide a feasible decision method that is the minority subordinate
to the majority. In order to show the advantage of using relative
and absolute quantitative simultaneously under multiple granular
structures, a specific case is introduced in this paper.

In this section, a knowledge representation system of cars is
introduced to illustrate the theory and advantage of the new
model. Detailed description is shown in the following. Let S =
(U,AT,D, F) be a decision table, where U is composed of 20 cars,
and AT = {Design, Model, Color} ia a conditional attribute set and
D = {Beauty} is a decision attribute set. Let A; CAT,i=1,2,3. de-
note equivalence relations about condition attributes, where A; =
{Design, Model}, A, = {Design, Color}, A3 = {Model, Color}. Based on
the measured car data in Table 2, Table 3-5 show the statistical
results of car classes under different granular structures, where
(i, j) (i, j € [0, 2]) denotes the rank of condition attributes and
X = {Xy, X4, X5, X5, X9, X10, X12, X15. X16, X19} denotes a decision class
in which cars are beautiful. The rough set regions will be calcu-
lated in the case that k=1,¢ =2/3.

4.1. Description of the GMDq-DTRS theory

Firstly, results of car classes under Ay, Ay, A3 granular structures
can be get from Table 3-5.

Then we can get the generalized multigranulation double-
quantitative lower and upper approximations of X with respect to
32 | A; under different constraint conditions. In the Bayesian de-
cision procedure [37], experts will give values of the loss function,
namely, Ajp = A(q;|X), Ay = A(q;|XC), and i = P, B, N.

Case 1: Consider loss functions of Table 6, there are o =
0.6, ,31 =04, 0y = 0.7, ,32 =0.3, o3 = 0.8, ,33 =0.2. It is true that
aij+Bi=1 for i=1,2,3. According to Table 2-4, we can obtain
the upper and lower approximations of DqI-DTRS model.

Under the granular structure A;, according to the definition of
DqI-DTRS, we can get
A106.04)X) =U — {X3, X4, X11, X17}
= {X1. X2, X5, Xg., X7, X3, X9, X10. X12. X13, X14. X15, X16, X18, X19, X20}
A1, (X) =U — {x4, %11, x17}
= {X1, X2, X3, X5, X6, X7, X8, X9, X10, X12,
X13, X14, X15, X16, X18, X19, X20}.

Under the granular structure A,, according to the definition of
DqI-DTRS, we can get

/T2(0.7,0.3)(X) =U — {xg}
= {X1,X2. X3, X4, X5, X6, X7, X9, X10, X11,
X12, X13, X14, X15, X16, X17, X18. X19. X20}
&1 (X) =U — {x1. X5, X7, Xg, X11, X13}
= {X2. X3, X4, Xg., X3, X10, X12, X14. X15, X16, X17, X138, X19, X20}
Under the granular structure As, according to the definition of
DqI-DTRS, we can get
A73(0.8.042)(X) =U — {X7, X3, X11, X14, X17, X18, X20}
= {X1. X2, X3, X4, X5, X6, X9, X10. X12, X13, X15, X16, X19},
A3, (X)=U - {X7. %8, X17, X18, X20}
= {X1. X2, X3, X4, X5, X6, X, X10, X1, X12, X13, X14, X15, X16, X19}-

. L = I
Then on the basis of the definition of GMlzis:] A and leS:lAi,
there are

GiM’Z[LA,- (X) =U — {xs, x11, X17}
= {X1, X2, X3, X4, X5, Xg, X7, X9, X10, X12,
X13, X14, X15, X16, X18, X19, X20}
@12_3 2 X) =U = {x7,x11, x17}
i=144
= {X1. X2, X3, X4, X5, Xg, X8, X9, X10. X12.
X13, X14, X15, X16, X18, X19. X20}

By the lower approximation @123 A (X) and upper approxi-
i=174

mation GWIZ?_l A (X), the positive region, negative region, upper
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Table 4

Statistical results of car classes under the granular structure A,
() W kel KenX (W 0XE POl (Xl — [l 0X]
(0,0) xg 1 9 0 0 1
(0,1)  x31018 3 X2,10 2 2/3 1
(0,2) X214 2 X12 1 12 1
(1,0) X 51 3 X5 1 13 2
(L1) X517 2 X15 1 12 1
(l, 2) X3, 4 2 X4 1 ]/2 1
(2,0)  x19,20 2 X19 1 1/2 1
2, 1) X7,9,13 3 Xg 1 1/3 2
(2,2) X6, 16 2 X6, 16 2 1 0

Table 5

Statistical results of car classes under the granular structure As,
@) [X]a, [xlas | [xIa, 0 X lxla, 0 X[ PX[[Xlay)  [[X]as| = l[x]a, N X]
(0,0)  Xi519 3 X5, 19 2 2/3 1
(0,1)  x213,15 3 X2,15 2 2/3 1
0,2)  xu 1 ¥ 0 0 1
(1,0) X1 1 [ 0 0 1
(L) X118 3 [ 0 0 3
(1,2) X126 3 X4,12, 16 3 1 0
(2,0) X8, 20 2 [ 0 0 2
(2,1) X910 2 X9, 10 2 1 0
(2,2) X3.6 2 X6 1 1/2 1

Table 6 following:
Loss functions of Aq, Ay, A3 granular structures.
11 I 11
A1 s A pos™ (~ X) = {x7, xn}; Ubn'(~ X) = {x7}; Lbn"(~ X) = {Xs};
1
neg' (~ X) = U — {x7.Xs. X11. X17}
ap 0 22 0 13 0 36

ag 12 4 3 6 8 4
ay 18 0 17 0

and lower boundary region of X are as follows:
pos'(X) =U — {x7.Xs. X11. X17}
= {X1. X2, X3, X4, X5, X6, X9, X10, X12, X13, X14, X15, X16, X18, X19, X20}:
neg'(X) = {xu1, x17}; Ubn' (X) = {x7}; Lbn' (X) = {xs}.
Similarly, according to results from Table 7-9 and definitions of
DqII-DTRS, we can obtain the upper and lower approximations of
~X= {X] , X3, X7, X8, X11, X13, X14, X17, X138, X20} about Dqu-DTRS

Under the granular structure Aq, according to the definition of
DqlI-DTRS, we can get

An(~X) = {X4,X11,X17},ﬁ(0.6_0.4)(’v X) = {X3, X4, X1, X17}.

Under the granular structure A,, according to the definition of
DqlI-DTRS, we can get
Ay (~X) = {x1. %5, %7, X9, X11. X13}. Ag (5 5 (~ X) = {xs]}.

Under the granular structure As, according to the definition of
DqlI-DTRS, we can get
As1(~X) = {x7, X5, X17, X13. X20}.
Ih(o.g’o'z)(w X) = {x7,Xs, X11, X14, X17, X18, X20}.

GMII

Then according to the definition of GiM%s 4 and GM_ s |,
=17 i A

there are

i
G, 5 a4 (~X) = {x7. %11, x17}, GM%?:] a (X)) = {xs. x11. x17}.

11

By the lower approximation GM. A'(~X ) and upper approx-

a4
imation GMIZ?_l Ai(~ X), the positive region, negative region, up-
per boundary region and lower boundary region of ~ X are as

= {X1, X2, X3, X4, X5, Xg, X9, X10, X12, X13, X14, X15, X16, X18. X19, X20}-

Compared with above results of the positive, negative and
boundary regions of GMDqIRS and GMDqIIRS, we can obtain
that the accepted region, rejective region, delayed region of X in
GMDqI-DTRS are equivalent to the rejective region, accepted re-
gion, delayed region of ~ X in GMDqII-DTRS, respectively.

Case 2: Consider loss functions of Table 10, then it is true that
a;+ Bi <1 for i=1,2,3. We can obtain the upper and lower ap-
proximations of DqI-DTRS model.

From the loss founction of the granular structure A, there are
o; = 0.6, and B; = 0.3. By the definition of DqI-DTRS and the result
of Table 3, we can get

A106.03)X) =U — {x3}
= {X1, X2, X4, X5, X6, X7, X8, X9, X10, X11, X12,
X13, X14, X15, X16, X17, X18, X19, X20}

A1, (X) =U — {x4, X1, x17}
= {X1, X2, X3, X5, X6, X7, X3, X9, X10, X12,
X13, X14, X15, X16, X18, X19, X20}.

From the loss founction of the granular structure A,, there are
a; = 0.7, and B; = 0.2. By the definition of DqI-DTRS and the result
of Table 4, we can obtain

A207.02X) =U — {xg}
= {X1,X2, X3, X4, X5, X6, X7, X9, X10, X11, X12,
X13, X14, X15, X16, X17. X18, X19. X20}
&1 (X) =U — {x1. X5, X7, Xg, X11, X13}
= {X2, X3, X4, X6, X3 X10. X12. X14.
X15, X16, X17, X18. X19. X20}-
From the loss founction of the granular structure As, there are

a; = 0.8, and B; = 0.1. By the definition of DqI-DTRS and the result
of Table 5, we can have
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Table 7

Statistical results of car classes under the granular structure A;.

(i j) [x]a, [XIa, | [X]a, N (~X)  [X]a, n(~ X P~ XOIXa) X4, | = [[X]a, 0 (~ XD
0,0) x5 14 2 X 1 12 1
0, 1) X12, 18 2 X18 1 1/2 1
(0, 2) X8, 10 2 X3 1 1/2 1
(1,0) X515 3 X1 1 1/3 2
(L1 Xgnw 3 X1, 17 2 2/3 1
1,2 x 1 X3 1 1 0
(2,0) X13, 19 2 X13 1 12 1
1) %1 2 P 1 12 1
(2,2) X6, 9, 20 3 X20 1 1/3 2
Table 8

Statistical results of car classes under the granular structure A,

(i, j) [X]a, [[Xla, | [X]a, N (~X)  [x]a, N (~ X)) PO~ X)[Xlay) X4, | = [[X]a, N (~ XD
(0,0) xg 1 Xg 1 1 0
(0,1)  x,1018 3 X1g 1 13 2
(0,2) X214 2 X14 1 12 1
(1,0)  Xi5mn 3 X1, n 2 2/3 1
(L1) X517 2 X17 1 1/2 1
(1,2) X3, 4 2 X3 1 1/2 1
(2,0) X920 2 X20 1 1/2 1
(2,1)  X7913 3 X7,13 2 2/3 1
(2,2) X616 2 [ 0 0 2
Table 9

Statistical results of car classes under the granular structureAs,

(i, J) [x]a, [[Xlas | (X, N (~X) X, n (X1 PO~ X)[Xlay) X4y | = [[X]ay 0 (~ X))
0,00 xi519 3 1 1 13 2
0,1)  x13,15 3 X13 1 13 2
(0, 2) X14 1 X14 1 1 0
(1,0)  xq 1 X1 1 1 0
(L1)  x,17,18 3 X7,17,18 3 1 0
(,2)  Xg4126 3 0 0 0 3
(2,0) X320 2 X8, 20 2 1 0
(2,1) X010 2 ] 0 0 2
2.2) x5 2 X3 1 12 1
Table 10 following:
Loss functions of Aq, Ay, A3 granular struc-
tures. pos'(X) = U — {x7, g, X1, X17}
A A A = {X1. X2, X3, X4, X5, X6, X9, X10. X12, X13, X14. X15, X16, X18, X19, X20}:
@ 0 9 0 19 0 18 neg'(X) = #; Ubn' (X)
ag 6 6 5 4

ayw 16 0 26 O 22 0

/T3(0.8,O.1)(X) =U — {x7, Xg, X11, X14, X17, X138, X20}
= {X1, X2, X3, X4, X5, X6, X9, X10, X12, X13, X15, X16, X19},
A (X)=U - {x7. X8, 17, X138, X20}

= {X1, X2, X3, X4, X5, X6, X9, X10, X1, X12, X13, X14, X15, X16, X19}

According to the definition of GiMle_s_l aand GM’ZS ,» there are

i=174
GV, 4, () =U — {xs)
= {X1’X2’X3’X47X57X6,X7,X9,X10,X11,x12’
X13, X14, X15, X16, X17, X18, X19, Xzo}
1
My, (X) =U — {x7, X11, X17}

= {X1, X2, X3, X4, X5, Xg, X3, X9, X10, X12. X13. X14. X15. X16. X18, X19, X20} -

1

By the lower approximation GM. A.(X) and upper approx-

S A
imation GT/IIZ?_1 Ai(X)’ the positive region, negative region, up-
per boundary region and lower boundary region of X are as

= {x7, X1, x17}; Lbn' (X) = {xs}.

Similarly, we can obtain the upper and lower approximations of
~X= {Xl , X3, X7, Xg, X11, X13, X14, X17, X138, X20} about Dqll-DTRS

When oy =0.6, B; =0.3, there are Aj;(~X) = {X4.%11. X7},
A1 (06.03) (™ X) = {x3, X4, x40, 47}

When ap =07, B,=02  there are Ay (~X)=
{x1. X5, X7, X9, X1, X13}, Az (7 ) (~ X) = {xs}. B
When @3=08, f3=01, there are As;(~X)=

(%7, X8, 17, X18, %20}, A3 g 1) (~ X) = X7, X8, X1, X1, X17, X138, %20}

According to the definition of W’iis:l Aiand@%s ,» there are

i=17%

—— I
CMy2, 4, (~X)

= {X7,X11,X17},ﬂ1£‘3:1m(“’ X) = {Xs, x11, X17}.

By the lower approximation GM% A'(~ X) and upper approx-

i=1%%
imation W’égﬁl 4;(~X), the positive region, negative region, up-
per boundary region and lower boundary region of ~ X are as
following:
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Table 11
Loss functions of Ay, Ay, A; granular struc-
tures.

A A, As

ap 0 13 0 13 0 19
ap 6 4 3 6 4
ay 10 0 12 0 1 0

pos’ (~ X) = {x7, x11 }: Ubn' (~ X) =
neg'(~ X) =U — {x7, Xg. X11. X17}
= {X1. X2, X3, X4, X5, X, X9, X10, X12, X13, X14, X15, X16, X18, X19, X20}.

Comparison of results of the positive, negative and boundary
regions between GMDqIRS and GMDqIIRS , we can obtain that the
rejective region and lower delayed region of X in GMDqI-DTRS are
contained in the accepted region and lower delayed region of ~ X
in GMDqII-DTRS, respectively; the rejective region and upper de-
layed region of ~ X in GMDqII-DTRS are included in the accepted
region and upper delayed region of X in GMDqI-DTRS, respectively.

Case 3: Considering loss functions of Table 11, then conclusion
aj+ B> 1,i=1,2,3 hold. We can obtain the upper and lower ap-
proximations of X about DqI-DTRS.

When «; = 0.6, 8; = 0.5, there are

A1(06.05) (X) = {X1. X5, X6, X9, X15, X20},
A1, (X) =U = {xq, X11, X17}
= {X1, X2, X3, X5, X6, X7, X3, X9, X10, X12,

{x7}: Lbn"' (~ X) = {xs}

X13, X14, X15, X16, X18, X19, X20}-
When «; = 0.7, B; = 0.4, there are

A207.04)(X) =U — {X1, X5, X7, X3, Xo, X11, X13}
= {X2. X3, X4, X6, X10, X12, X14, X15, X16, X17, X18, X19, X20}
Ay, (X) =U — {x1, X5, X7, X9, X11, X13}
= {X2. X3, X4, X6, X3, X10, X12, X14, X15, X16. X17, X18, X19, X20}
When «; = 0.8, B; = 0.3, there are
1T3(0.8,0.3)(X) =U — {X7, X3, X1, X14, X17, X138, X20 }
= {X1. X2, X3, X4, X5, X6, X9, X10, X12, X13, X15, X16, X19},
A3, (X) = U — {x7, Xg, X17, X158, X20}
= {X1. X2, X3, X4, X5, X6, X9, X10, X11, X12, X13, X14, X15, X16, X19}-

According to the definition of GWIZS 4 and GML , there
=171 i A

are

GMJ s 4, (X) = {X1,X2,X3,X4,XS,X&X9,X10,X12,X15,Xle,Xlg,Xzo}
I

GMﬁﬂ 4 X)) =U —{x7. %11, X17}

= {XLX27X3,X4aX57X67X8aX9,X107X127
X13, X14, X15, X16, X18, X19, X20}

By the lower approximation GM" (X) and upper approxi-

==yl
mation Wzg A (X), the positive region, negative region, upper
i
boundary region and lower boundary region of X are as follow-
ing:
pos' (X) = U — {x7, X, X11, X13. X14, X17. X138}
= {X1. X2, X3, X4, X5, X6, X9, X10, X12, X15, X16, X19, X20}:
neg'(X) = {x7, x11, X17}; Ubn' (X) = 0; Lbn' (X) = {Xs. X13., X14, X15}.
Similarly, we can obtain the upper and lower approximations of
~ X = {x1,X3, X7, X3, X11, X13, X14, X17, X18, X20} about DqII-DTRS.
When  «; = 0.6, Bi=0.5, there are Aj(~X)=
(x4, X1, %17}.A1 6 0.5, (~ XD = (X3, X4, X11, X17}.

When ;=07 B;=04, there are Ay(~X)=
(X1, X5, X7, %9, X11. X13}, Ag 7 4y (~ X) = {Xs}. B
When  «;=0.8, Bi=03, there are A1 (~X) =

{x7,Xg, 17, X18, X201}, A3 g g 3y (~ X) = {X7, X5, X11, X14, X17, X18, X20}-
According to the definition of GMZS 4, and GM;
are

—I
GMys 4 (~X) =

, there
i= 1Al

{X2, X1, x17}, GMZ A, (2 X) = {xs. x11. x17}.

By the lower approximation GM'" (~ X) and upper approxi-

rhA
mation WIZ,L Ai(N X), the positive region, negative region, upper
and lower boundary region of ~ X are as following:
pos' (~ X) = {x7,xn}; Ubn" (~ X) = {x7}; Lbn" (~ X) = {xs};
neg' (~ X) =U — {x7, X, X1, X17}

= {X1, X2, X3, X4, X5, X6, X9, X10, X12, X13, X14, X15, X16, X18, X19, X20 .

Observing above results of the positive, negative and boundary
regions in GMDQqIRS and GMDqIIRS , we can known that the ac-
cepted region and upper delayed region of X in GMDqI-DTRS are
contained in the rejective region and upper delayed region of ~ X
in GMDqII-DTRS, respectively; the accepted region and lower de-
layed region of ~ X in GMDqII-DTRS are included in rejective re-
gion and lower delayed region of X in GMDqI-DTRS, respectively.

When ¢; < 1, 8; > 0, k > 1, by comparing related results of gen-
eralized multigranulation double-quantitative rough sets and gen-
eralized multigranulation rough sets, we find generalized multi-
granulation double-quantitative decision-theoretic rough set theory
has a strong fault tolerance ability, and can provide a more detailed
description of the approximate space.

4.2. Description of the relationship between GMDq-DTRS and GMRS

According to the Pawlak rough set theory, the lower and up-
per approximations of X under different granular structures can be
obtained. Detailed results are as follows:

A1(X) =U —{x3}. A1 (X) =
Ay (X) =U = {xg}, Ay (X) = {X6, x16};
A3(X) =U — {x7. X5, X11. X12. X17, X18, X20},  A3(X) = {X4. %9, X10,

X12, X16}-

When the information level ¢ =2/3, the generalized multi-
granulation lower and upper approximations of X with respect to
>3 | A; can be obtained, namely

CMys ,X)=U~ {Xg}. GMy5 4 (X) = {xi6}-

On the other hand, when «; =1, ; =0,k =0, the lower and
upper approximations of X under different granular structures can
be obtained in the DqI-DTRS model. Detailed results are as follows:

Al1,0)X) =U — {x3} = A1 (X), A1,(X) =0 = A1 (X);
Ar1,0)X) =U — {xg} = Aa (X). Ay (X) = {6, X16} = A2 (X):
A31,00(X) =U — {x7. X5, X11, X14. X17. X158, X20} = A3(X). A3, (X) =

{X4, %9, X10, X12, X16} = A3(X).

When the information level ¢ =2/3, the lower and upper ap-
proximations of an arbitrary subset X with respect to 21-3=1 Aj can
be obtained in the GMDqI-DTRS, namely

GMIZ3 400 =U — {xg) = CMys , (X). M.

213 1 (X)

And the lower and upper approximations of X under different
granular structures can be obtained in the DqII-DTRS model. De-
tailed results are as follows:

(X) = {xi6} =

Aro(X) = U — {3} = A1 (), Ary o) () = 0 = A (X):
Ao (X) =U — {xg} = A2 (X). Ay ; o (X) = {X6. X16} = A2 (X):
A30(X) =U — {x7.Xg. X11. X14. X17. X15. X20} = A3 (X). Az 4 (X) =

{X4. X9, X10. X12, X16} = A3 (X).
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When the information level ¢ = 2/3, the lower and upper ap-
proximations of an arbitrary subset X with respect to 21-3:1 A; can
be obtained in the GMDqu-DTRS namely

My 4, (0 =U — {xs) =GMgs , (X).GMYs  (X) =
w21'3:1/“:‘ ).

By comparing the results of generalized multigranulation
double-quantitative rough sets and generalized multigranulation
rough sets, we can find the two kinds of the generalized multigran-
ulation double-quantitative decision-theoretic rough set are also
equivalent when «; =1, 8; =0,k = 0. The two kinds of the gen-
eralized multigranulation double-quantitative decision-theoretic
rough set are all equivalent to the generalized multigranulation
rough set.

{x16} =

4.3. Description of the advantage of GMDq-DTRS

The calculation method of the approximation accuracy of U/DT
with respect to Zis=1 A; in the generalized multigranulation rough
set(GMRS) is as follows:

ZYieU/DT |wz’$:1,41 (Y1)|
ZY,»GU/D |mz$:] Ai (Yl)| ,
where  CMys , (X)={xeU: (4,0 —sh )/ > 1

¢).GMys 0~ feeu: (CLi Sy )/ = ).

The lower and upper approximations of decision classes X; and
X, under granular structures A, A, and Az can be obtained as fol-
lows:

A1(X1) =U —{x3}, A1 (X1) =0 A1 (o) = U, A1(X2) = {x3}:

Ay(X1) =U—{xg}, Ax(Xy) = {x6.x16}; A2(Xp2) =U — {x6. X16}.
Ay (Xo) = {xs}):

ays 4 (U/DT) =

A3(Xq) =U — {x7, X8, X11, X14, X17, X18, X20},  A3(X1) = {X4, X9, X10,
X12, X16};

A3(X2) = U — {x4, X9, X10, X12, X16},  A3(X2) = {X7, X8, X11, X14, X17,
X18, %20}

In the GMRS, the lower and upper approximations of X; and
X,with respect to Zl-s=1 A; can be obtained as follows:

CMys o (X1) =U —{xs}, GMgs 5 (X1) = {x16}:

CMys o (X2) = - {x16}. CMys , (X2) = {xs}.

Therefore, the approximation accuracy of U/DT with respect to
ZL A; in the generalized multigranulation rough set(GMRS) can
(X1)\+\GMZS A X2)| 3
¥3 4 X))

In the first kind of double—quantltatlve decision- theoretic rough
set(DqI-DTRS), the lower and upper approximations of decision
classes X; and X, under granular structures A;, A, and A3 can be
obtained as follows:

when o; + B =1,

A1(06.04)X1) =U -

A1(06,04)X2) =U —
{x1,%5. X6, X9, X15. X20}-

A207,03)X1) =U — {xg}, Ay, (X1) = U — {x1, X5, X7, X9, X11, X13};

A2(0.7,03)X2) =U — {= X6, x16}, A2, (X2) =U —

{X2, X6, X10. X16, X18}-

Asz(08,02) 1) =U —
U — {x7.xg, X17, X18, X20}

A3(08,02)(X2) = U — {X4. X9, X10. X12. X16}. A3, (X2) =U —

{x1. X2, X4, X5, X9, X10, X12, X13, X15, X16, X19} -

In the GMDqI-DTRS, when ¢ = 2/3, the lower and upper ap-
proximations of X; and X,with respect to Zle A; can be obtained
as foll(?ws:

GMZ?:] A; X1) =

{x7, %11, X17}:

be calculated as oy A U/DT) = =

o x5 2 KOFCH

-

{X3, x4, %11 X17}, A1, (X1) = U — {xq, X11, 17 )3
{x1, 5. X6, X9, X15, X20}, A1, (X2) =U —

{X7,Xs, X1, X14, X17, X18, X201}, A3, (X1) =

— {xs, x11, 17}, GM (X1) =U-

GTV’IZ,?:IA,. (X) =U — {xg, Xo, X16}, GM_
{1, %2, X5, Xg, X9, X10, X15, X16}

Therefore, the approximation accuracy of U/DT with respect to
Z, 1A; in the GMDqI-DTRS can be calculated as Uy A (U/DT) =

Xp)|+GM! X2)|
z,i A SiaA 2

Gy I+ 0l %

When o; + 8; < 1,

A106,03)X1) =U = {x3}, A1, (X1) = U — {x4, %11, 17 };

A1(06,03)X2) =U. A1, (X2) =U — {x1. %5, X6, X9, X15, X20}-

A207,02)X1) =U — {xg}, Ay, (X1) = U — {x1, X5, X7, X9, X11, X13};

A2(07,02)X2) =U — {x6, 16}, Az, (X2) = U — {x2, Xg. X10, X16, X18}-

A308,0.1)X1) =U — {X7.Xs., X11. X14, X17. X158, X20}, A3, (X1) =

—i><7, Xg. X17, X18. X20}

A308,01)X2) =U — {X4, X9, X10, X12, X16}, A3, (X2) =U —
{X1. X2, X4. X5. X9, X10. X12. X13. X15. X16. X19}.

In the GMDqI-DTRS, when ¢ = 2/3, the lower and upper ap-
proximations of X; and X,with respect to ZL A; can be obtained
as fol(;ws:

GMy3 2, (Xq) =

CMys (Xz)—U—

lom!

(=]

— {xg}, GM (Xl) =U —{x7, X1, x17};

GWIZ?=1Ai (X2) =U — {x:6}, GM (X)) =U -

{lexz,stxe,xgvxlo,hsyxle}
Therefore, the approximation accuracy of U/DT with respect to
Z, 1A; in the GMDqI-DTRS can be calculated as s A (U/DT) =

GM! )|

23

) <x1>|+\cMle_ .

[OVL3 LGNy (%)
When o; + 8; > 1,
A1(0.6,05)X1) = {x1, X5, X6, X9, X15, X0}, A1, (X1) =U —

{x4, x11. x17};

A1(06.05)X2) = {x3, X4, X1, X17}, A, (X)) = U —

{x1. X5, X5, X9, X15, X20}-

A2(0.7,04)X1) =U — {x1, X5, X7, Xg, X9, X11, X13}, Az, (X1) =
— {x1. %5, X7, X9, X11, X13};
A2(07.0.4)(X2) = U — {X2, X6, X10. X16. X18}. A2, (X2) = U —

{Xzﬁe,xwv?‘m,?‘ls}-
Az08,03) X)) =U~—

— {x7. X3, X17, X18, X20}
A3(08,03)(X2) =U — {X4, X9, X10, X12, X16}, A3, (X2) =U —

{X1, X2, X4, X5, X9, X10, X12, X13, X15, X16, X19}-

In the GMDqI-DTRS, when ¢ = 2/3, the lower and upper ap-
proximations of X; and X,with respect to Z,L A; can be obtained
as follows:

W‘I\l
ool

{X7.Xs, X11. X14, X17. X158, X20}, A3, (X1) =

—
GMy3 4 (X1) =U — {x7, X3, X1, X13, X14, X17, X18}, GM 2 X1 =
= {x7.x11. %97}

GMIZ?:] 4, X2) =U — {x3.X6. X9, X10. X12, X16. X18} GM A X2) =

- {XlsXZ’XSvXG’X9»X10’X15sX16}~
Therefore, the approximation accuracy of U/DT with respect to

32 ,Aj in the GMDqI-DTRS can be calculated as Ay a (U/DT) =
\GMZ?_ N (XI)MGMZ,S_ 402! 0
=26

[CMy3 5 ODIFIEMy3 4 06)]

By comparing the results of the approximation accuracy of
GMDqI-DTRS and GMRS, it is evident that the approximation ac-
curacy of GMDqI-DTRS is higher than the approximation accuracy
of GMRS no matter what kind of constraints.

In the second kind of double-quantitative decision-theoretic
rough set(DqII-DTRS), the lower and upper approximations of deci-
sion classes X; and X, under granular structures A;, A, and Az can
be obtained as follows:

when o; + B =1,
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A1 (X1) = {x1, X5, X6, X9, X15, X20}, A1 5 0.4y K1) =
{1, X5, X6, X9, X15. X20}:

A1 (X2) = (x4, X1, %17}, A1 6 .4 K2) = (X3, X4, X11, %97}

A21(X1) = {x2, X6, X10, X16. X18}. A2 4 7 3, (K1) = {X6. X16}:

Ax (X2) = (X1, X5, X7, X9, X11, X13}, Ag (6 4y (X2) = {Xs}.

A3 (X1) = (X1, X2, X4, X5, X9, X10, X12, X13, X15, X16, X19}. A3 5. o)
(X1) = {x4, X9, X10. X12, X16}:

A3 (Xp) = {x7, X8, X17, X18, %20}, A3 6 .4y X2) =
{x4. X7, X3, X11, X17, X138, X20}-

In the GMDqI-DTRS, when ¢ = 2/3, the lower and upper ap-
proximations of X; and X,with respect to Z,‘il A; can be obtained
as fol%ws

GMZ?
{XG’XQ’leﬁ}

GMZ3 4, X2) = {x7.x11. x17}, GM A X2) = {xg. x11. X17}.

Therefore, the approximation accuracy of U/DT with respect to
Y2, A; in the GMDqI-DTRS can be calculated as ays a U/DT) =

IGMT 5 (Xp)|+IGM™ <x>\
D S kY _ 6

lGMZ?:lA,'(X])‘+IWZ?:1Ai(X2)‘ b

When «;+ B; <1 and «;+ B; > 1, the approximation accu-

racy of U/DT with respect to Z,S 1A; in the GMDqI-DTRS is also
IGMYy 3 I(X1>|+|GM’£ ol
g, UPD) = [CHys g 00 I+[GHgs p06)] 1T

By comparing the results of the approximation accuracy of
GMDqII-DTRS and GMRS, it is evident that the approximation ac-
curacy of GMDqII-DTRS is higher than the approximation accuracy
of GMRS no matter what kind of constraints.

In conclusion, approximate classification capability of general-
ized multigranulation double-quantitative rough sets is better than
approximate classification capability of the generalized multigran-
ulation rough set.

(X1) = {x1. X2, X5. X6, X9, X15. X16. X20 }, GM (X1) =

5. Conclusions

By weakening constraint conditions, double-quantitative rough
sets are more consistent with the reality of the approximation
space and provide enough information for making decisions. And
the principle of the minority subordinate to the majority is the
most feasible and credible when people make decisions in real
world. The research on combining generalized multigranulation
with double-quantitative decision-theoretic is significant. In this
paper, we propose the definition of lower and upper approxi-
mations of generalized multigranulation double-quantitative rough
sets. Through the pair, we get basic concepts of two kinds of gener-
alized multigranulation double-quantitative rough sets and obtain
corresponding decision rules based on the idea of three-way deci-
sions. Then the relationship between these two kinds of rough sets
is discussed under different constraint conditions. Moreover, the
relationship between GMDq-DTRS and other models is compared
in detail. Finally, the theory and advantage of the new model are
interpreted by an illustrative case study.

Generalized multigranulation double-quantitative decision-
theoretic rough sets provide theoretical foundation for making
decisions and extend generalized multigranulation rough sets. This
paper just provides a framework of generalized multigranulation
double-quantitative decision-theoretic rough sets. Like uncertainty
measures and properties of models with respect to concepts and
parameters need to be explored. Generalized multigranulation
double-quantitative decision-theoretic rough sets provide a new
method for information fusion. Especially, applications of the
models proposed in the paper to real life should be studied in the
future.
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