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a b s t r a c t 

The principle of the minority subordinate to the majority is the most feasible and credible when peo- 

ple make decisions in real world. So generalized multigranulation rough set theory is a desirable fusion 

method, in which upper and lower approximations are approximated by granular structures satisfying a 

certain level of information. However, the relationship between a equivalence class and a concept under 

each granular structure is very strict. Therefore, more attention are paid to fault tolerance capabilities of 

double-quantitative rough set theory and the feasibility of majority principle. By considering relative and 

absolute quantitative information between the class and concept, we propose two kinds of generalized 

multigranulation double-quantitative decision-theoretic rough sets(GMDq-DTRS). Firstly, we define upper 

and lower approximations of generalized multigranulation double-quantitative rough sets by introducing 

upper and lower support characteristic functions. Then, important properties of two kinds of GMDq-DTRS 

models are explored and corresponding decision rules are given. Moreover, internal relations between the 

two models under certain constraints and GMDq-DTRS and other models are explored. The definition of 

the approximation accuracy in GMDq-DTRS is proposed to show the advantage of GMDq-DTRS. Finally, 

an illustrative case is shown to elaborate the theories advantage of GMDq-DTRS which are valuable to 

deal with practical problems. Generalized multigranulation double-quantitative decision-theoretic rough 

set theory will be more feasible when making decisions in real life. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Rough set theory, proposed by Pawlak in his seminal paper

[21] , is a new mathematical tool for processing uncertain informa-

tion. Correlational studies spread across many fields [31,48] , such

as artificial intelligence, machine learning, neural computing, data

mining, cloud computing, information security, knowledge discov-

ery, internet of things, biological information processing and so on.

Compared with classical set theory, Pawlak’s rough set theory

does not require any transcendental knowledge about data, such

as membership functions of fuzzy sets, or probability distribution

[7,8,39] . The basic idea of rough sets is to describe a concept

by the upper and lower approximate definable sets. The lower

approximation consists of elements whose equivalence class is

completely contained in the concept and the upper approxima-

tion is made up of elements whose equivalence class is partially

contained in the concept. Without considering intersection degree,

so rough sets have no fault tolerance capability. A large number

of generalized models have been put forward, such as the grade
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ough set model(GRS) [44] , the rough set model based on toler-

nce relation [9,37] , the dominance-based rough set model [2] ,

he fuzzy rough set model and the rough fuzzy set model [1] and

o on. Particularly, many probabilistic rough set models are pre-

ented. Wong et al. [32] put forward the definition of probabilistic

ough sets by the introduction of probability approximation spaces

nto rough sets. Pawlak et al [22] proposed a model of probabilis-

ic approaches versus the deterministic approach. Yao et al. [46]

resented the decision-theoretic rough set (DTRS) based on condi-

ional probability and two parameters, which provides reasonable

emantic interpretation for decision-making process and gives an

ffective approach for selecting the threshold parameters. Ziarko

50] constructed the variable precision rough set model when

he sum of two parameters is equal to 1. Ślezak studied the

ayesian rough set model [28] . Herbert and Yao [4] explored the

ame-theoretic rough set model by combining game theory with

ecision making. Yao et al. [49] constructed a model of web-based

edical decision support systems based on DTRS model. Liu

t al. [10] proposed a multiple-category classification approach

ith decision-theoretic rough sets, which can effectively reduce

isclassification rate. Yu et al. [45] studied a automatic method of

lustering analysis with the decision-theoretic rough set theory. Jia

5,6] raised an optimization problem and attribute reduction about

http://dx.doi.org/10.1016/j.knosys.2016.05.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.05.021&domain=pdf
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TRS model under considering the minimization of the decision

ost. Yao et al. [43] constructed a model of web-based medical

ecision support systems based on DTRS model. Liu et al. [11] pro-

osed a method of policy analysis with three-way decisions. Zhao

t al. [53] made an intensive study of email information filtering

ystem by using three-way decisions. 

In general, the DTRS model mainly describes approximate

paces in terms of relative quantitative information. The GRS

odel [15,33,44] mainly describes approximate spaces from ab-

olute quantitative information by introducing absolute rough

embership. They are two fundamental expansion models which

ave strong fault tolerance capabilities due to quantitative descrip-

ions, so none can be neglected. Hence, Zhang et al. [52] made

 comparative study of variable precision rough set model and

raded rough set model. Greco et al. [3] presented a generalized

ariable precision rough set model using the absolute and relative

ough membership. Combining relative and absolute quantitative

nformation, Li and Xu [18] proposed a framework of double-

uantitative decision-theoretic rough sets (Dq-DTRS) based on the

ayesian decision procedure and GRS model. 

From the perspective of granular computing, either classical

ough sets or double-quantitative rough sets are based on single

ndiscernibility relations. In many circumstances, however, a target

oncept needs to be described through multiple binary relations

n the basis of a user’s requirements or goals of problem solving.

herefore, Qian et al. [23–25] introduced multigranulation rough

et theory(MGRS). Multigranulation theoretical framework has

een greatly enriched, and a lot of generalized models about

ultigranulation have also been put forward and deeply studied.

u and Leung [30] proposed a formal approach to granular

omputing with multi-scale data decision information systems.

aghavan and Tripathy [26] explored topological properties of

ultigranulation rough sets for the first time. Xu et al. [33–

7] considered variable, fuzzy and ordered multigranulation rough

et models, respectively. Liu and Miao [14] presented a multi-

ranulation rough set method in covering contexts. Liang et al.

17] established an efficient feature selection algorithm with a

ulti-granulation view. She et al. [27] deeply studied explored

opological structures and properties of multigranulation rough

ets. Considering the principle of the minority subordinate to the

ajority, Xu [38] proposed the generalized multigranulation rough

et model(GMGRS). In the multigranulation rough set theory, each

f various binary relation determines a corresponding information

ranulation, which largely impacts the commonality between each

f the granulations and the fusion among all granulations. Qian

t al. [30] therefore introduced the idea of multigranulation into

TRS, and further proposed three kinds of the multigranulation

TRS model. And Li and Xu [19,20] studied the multigranulation

TRS in an ordered information system. 

In fact, there are so many factors need to be considered in

he process of making decisions, and every aspect taken into ac-

ount is unpractical in terms of time, energy, money and material

esources. So the whole decision process is divided into model

artition. Each part makes decision according to required granula-

ions and the comprehension evaluation is finally made based on

he the principle of the minority subordinate to the majority. For

xample, singing contest judges come from different industries,

hich have their own aesthetic standards. A record company may

onsider from an economic point of view. Music producers pay

ore attention to the ability of expressing the soul of the music.

hen the winner is supported by majority people after the vote.

ecisions come from different granular structures, and each deci-

ion may have a deviation in terms of actual situation throughout

he process. Therefore, double-quantitative decision-theoretic 

ough sets with strong fault tolerance capabilities are consistent

ith real world situations, and more attention should be paid to
he theory. Meanwhile, it is necessary to introduce the idea of

eneralized multigranulation into decision-theoretic rough sets. 

hen we further emphasize comparative advantages of Dq-DTRS

nd GMGRS, which can be illustrated from the following aspects: 

• Compared with classical decision-theoretic rough sets, Dq-DTRS

[18] exhibit strong double fault tolerance capabilities in terms

of both relative and absolute fault tolerance, and have further

advantage of completeness. 

• A generalized variable precision rough set model using the ab-

solute and relative rough membership [3] has been used ex-

tensively in the study of measures, reasoning, applications of

uncertainty and approximate spaces. 

• Considering the principle of the minority subordinate to the

majority, GMGRS [38] theory is a kind of information fusion

strategies through single granulation rough sets. 

• For some special information systems, such as multi-source in-

formation systems, distributive information systems and groups

of intelligent agents, the classical decision-theoretic rough sets

can not be used to data mining from these information systems,

but GMGRS can. 

So the motivation of this paper is to explore double-quantitative

ecision-theoretic rough sets theory in multiple granular struc-

ures. Then we develop a new multigranulation decision model,

alled generalized multigranulation double-quantitative decision- 

heoretic rough sets (GMDq-DTRS). In accordance with the type of

he double-quantitative decision-theoretic rough sets, two kinds

f generalized multigranulation double-quantitative decision- 

heoretic rough set models are constructed. 

The rest of this paper is organized as follows. Section 2 pro-

ides a review of basic concepts of Pawlak’s rough sets, decision-

heoretic rough sets, double-quantitative decision-theoretic rough 

ets and generalized multigranulation rough sets. In Section 3 ,

e define the lower and upper approximations of generalized

ultigranulation double-quantitative decision-theoretic rough sets, 

nd discuss the basic relation among two kinds of GMDq-DTRS

odels under certain constraints. Meanwhile, the comparison

etween GMDq-DTRS and other models is made. The approxima-

ion accuracy in GMDq-DTRS is proposed to show the advantage

f GMDq-DTRS. In Section 4 , an illustrative case was presented

o interpret the theory and advantage of GMDq-DTRS. Finally,

ection 5 gets conclusions. 

. Preliminary 

In this section, we provide a review of some basic con-

epts such as rough sets, decision-theoretic rough sets, double-

uantitative decision-theoretic rough sets, generalized multigranu- 

ation rough sets. 

.1. Pawlak’s rough sets 

Suppose U be a non-empty finite universe and R be an equiv-

lence relation of U × U . The equivalence relation R induces a

artition of U , denoted by U/R = { [ x ] R | x ∈ U} , where [ x ] R repre-

ents the equivalence class of x with regard to R . Then ( U, R ) is the

awlak approximation space. For an arbitrary subset X of U , the

ower and upper approximations of X are defined as follows [21] : 

R (X ) = { x ∈ U| [ x ] R ∩ X � = ∅} = ∪{ [ x ] R | [ x ] R ∩ X � = ∅} , 
R (X ) = { x ∈ U| [ x ] R ⊆ X } = ∪{ [ x ] R | [ x ] R ⊆ X } . 

And pos (X ) = R (X ) , neg(X ) = ∼ R (X ) , bnd(X ) = R (X ) − R (X ) are

alled the positive region, negative region, and boundary region of

 , respectively. Objects definitely and not definitely contained in

he set X form positive region pos ( X ) and negative region neg ( X ).
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Objects that may be contained in the set X constitute boundary

region bnd ( X ). 

Uncertainty measures which can provide new viewpoints for

analyzing data is a key topic in rough set theory. The approxi-

mation accuracy proposed by Pawlak provides the percentage of

possible correct decisions when classifying objects by employing

the attribute set R . Let DS = { U, AT ∪ DT , V, f } be a decision system,

where U is a nonempty finite universe; AT is the set of condition

attributes and DT is the set of decision attributes; V is the union

of attribute value domain, i.e., V = ∪ a ∈ AT ∪ DT V a ; and f : U × { AT ∪ DT }

→ V is an information function, i.e., ∀ a ∈ AT ∪ DT, x ∈ U , that f ( x, a )

∈ V a , where f ( x, a ) is the value of the object x about the attribute

a . Let U/DT = { Y 1 , Y 2 , · · · , Y m 

} be a classification of universe U , and

R be an attribute set. Then the approximation accuracy of U / DT by

R is defined as 

αR (U/DT ) = 

∑ 

Y i ∈ U/DT | R (Y i ) | ∑ 

Y i ∈ U/D | R (Y i ) | 
. 

Decision-theoretic rough sets proposed by Yao give a way about

how to make decisions under minimum Bayesian expectation risk.

Based on the idea of three-way decisions, decision-theoretic rough

sets use a state set � and an action set A to describe the decision-

making process [39–42] . � = { X, X C } indicating that an object is in

a decision class X and not in X . The set of actions with respect to

a state is given by A = { a P , a B , a N } , where a P , a B and a N represent

three actions about deciding x ∈ pos ( X ), deciding x ∈ bnd ( X ), and

deciding x ∈ neg ( X ), respectively. Let λPP , λBP and λNP denote the

losses caused by taking actions a P , a B and a N , respectively, when

an object belongs to X ; and λPN , λBN and λNN denote the losses

incurred for taking the same actions when the object does not

belong to X . 

Given the loss function, the expected loss associated with tak-

ing the particular actions for the objects in [ x ] R can be expressed

as: 

R (a P | [ x ] R ) = λPP P (X | [ x ] R ) + λPN P (X 

C | [ x ] R ) ;
R (a B | [ x ] R ) = λBP P (X | [ x ] R ) + λBN P (X 

C | [ x ] R ) ;
R (a N | [ x ] R ) = λNP P (X | [ x ] R ) + λNN P (X 

C | [ x ] R ) . 
where P (X| [ x ] R ) = | X ∩ [ x ] R | / | [ x ] R | represents condition probability

of x with regard to X and P (X C | [ x ] R ) = 1 − P (X| [ x ] R ) , | • | denotes

the cardinality of a set. 

By Bayesian decision procedure, minimum-risk decision rules

are displayed as: 

( P ) If R ( a P |[ x ] R ) ≤ R ( a B |[ x ] R ) and R ( a P |[ x ] R ) ≤ R ( a N |[ x ] R ), decide x

∈ pos ( X ); 

( B ) If R ( a B |[ x ] R ) ≤ R ( a P |[ x ] R ) and R ( a B |[ x ] R ) ≤ R ( a N |[ x ] R ), decide x

∈ bnd ( X ); 

( N ) If R ( a N |[ x ] R ) ≤ R ( a P |[ x ] R ) and R ( a N |[ x ] R ) ≤ R ( a B |[ x ] R ), decide

x ∈ neg ( X ). 

According to actual situations, it is a reasonable hypothesis that

the cost of pos ( X ) is smallest and the cost of pos ( X ) and bnd ( X ) are

strictly smaller than the cost of neg ( X ) when x ∈ X , the reverse of

the order of loss is used for x ∈ X 

C , namely, λPP ≤ λBP < λNP and

λNN ≤ λBN < λPN . Then we can rewrite above rules as follows: 

( P ) If P ( X |[ x ] R ) ≥ α and P ( X |[ x ] R ) ≥ γ , decide x ∈ pos ( X ); 

( B ) If P ( X |[ x ] R ) ≤ α and P ( X |[ x ] R ) ≥ β , decide x ∈ bnd ( X ); 

( N ) If P ( X |[ x ] R ) ≥ β and P ( X |[ x ] R ) ≤ γ , decide x ∈ neg ( X ). 

Where parameters α, β and γ are defined as: 

α = 

λPN − λBN 

(λPN − λBN ) + (λBP − λPP ) 
;β = 

λBN − λNN 

(λBN − λNN ) + (λNP − λBP ) 
;

γ = 

λPN − λNN 

(λPN − λNN ) + (λNP − λPP ) 
. 

If a loss function further satisfies the condition: (λNP −
λBP )(λPN − λBN ) ≥ (λBP − λPP )(λBN − λNN ) , then we can get 0 ≤ β
< γ < α ≤ 1. DTRS has the following decision rules: 
( P ) If P ( X |[ x ] R ) ≥ α, decide x ∈ pos ( X ); 

( B ) If β < P ( X |[ x ] R ) < α, decide x ∈ bnd ( X ); 

( N ) If P ( X |[ x ] R ) ≤ β , decide x ∈ neg ( X ). 

Meanwhile, we can get the probabilistic approximations,

amely the upper and lower approximations of the DTRS model: 

 (α,β) (X ) = { x ∈ U| P (X | [ x ] R ) > β};
 (α,β) (X ) = { x ∈ U| P (X | [ x ] R ) ≥ α} . 

If R (α,β) (X ) = R (α,β) (X ) , then X is a definable set, otherwise X

s rough. If α = 1 , β = 0 , then R (α,β) (X ) = R (X ) , R (α,β) (X ) = R (X ) .

herefore, the DTRS model is a generalization of Pawlak’s model. 

Here, pos (α,β) (X ) = R (α,β) (X ) , neg (α,β) (X ) = ∼ R (α,β) (X ) ,

nd (α,β) (X ) = R (α,β) (X ) − R (α,β) (X ) are the positive region, nega-

ive region and boundary region of X , respectively. 

.2. Generalized multigranulation rough sets 

Generalized multigranulation rough sets are different from the

lassical model, because the former is constructed on the basic of a

amily of indiscernibility relations instead of single indiscernibility

elation. Considering the principle of the minority subordinate to

he majority, generalized multigranulation rough sets use a level

f information ϕ ∈ (0.5, 1] to select objects [38] . 

Let I = (U, AT , V, F ) be an information system, where U is a

onempty finite universe; AT is a set of condition attributes; V is

he union of attribute value domain, i.e., V = ∪ a ∈ A V a ; F : U × A →
 is an information function,i.e., ∀ a ∈ A, x ∈ U , that F ( x, a ) ∈ V a ,

here F ( x, a ) is the value of the object x about the attribute a . Un-

ess otherwise specified, all information systems in this paper are

nalogous to that defined above. 

Suppose an arbitrary subset A i of a condition attribute set AT ,

here i = 1 , 2 , · · · , s (s ≤ 2 AT ) , ϕ ∈ (0.5, 1]. For an arbitrary subset

 of U , the lower and upper approximations of X with respect to
 S 
i =1 A i can be defined as 

M 

∑ S 
i =1 A i 

(X ) = 

{ 

x ∈ U : 

( 

S ∑ 

i =1 

(1 − S A i � X 
(x )) 

) 

/s > 1 − ϕ 

} 

, 

M 

∑ S 
i =1 A i 

(X ) = 

{ 

x ∈ U : 

( 

S ∑ 

i =1 

S A i 
X 
(x ) 

) 

/s ≥ ϕ 

} 

, 

espectively, where S 
A i 
X 

(x ) is support characteristic function of x

 U with respect to concept X under A i ; i f [ x ] A i ⊆ X, then S 
A i 
X 

(x ) =
 , else S 

A i 
X 

(x ) = 0 . X is called a definable set with respect to 
∑ S 

i =1 A i

f and only if GM 

∑ S 
i =1 A i 

(X ) = GM 

∑ S 
i =1 A i 

(X ) ; otherwise X is called a

ough set with respect to 
∑ S 

i =1 A i . ϕ is called a level of informa-

ion with respect to 
∑ S 

i =1 A i . Positive region pos ( X ), negative region

eg ( X ), and boundary region bnd ( X ) are defined as follows: 

pos (X ) = GM 

∑ S 
i =1 A i 

(X ) ; neg(X ) = ∼ GM 

∑ S 
i =1 A i 

(X ) ;
nd(X ) = GM 

∑ S 
i =1 A i 

(X ) − GM 

∑ S 
i =1 A i 

(X ) . 

.3. Double-quantitative decision-theoretic rough sets 

Considering absolute quantitative information in the Bayesian

ecision procedure of the DTRS model, two fundamental Dq-DTRS

odels (DqI-DTRS and DqII-DTRS) are proposed [18] . In the fol-

owing, it should be point out that 0 ≤ k ≤ | U |, where | U | is the

ardinality of U . 

The first kind of double-quantitative decision-theoretic rough

et (DqI-DTRS) is denoted by (U, R (α,β) , R k ) , where R (α,β) and R k 

re the approximation operators [17] . For an arbitrary subset X of U
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an be characterized by a pair of upper and lower approximations

hich are 

 (α,β) (X ) = { x ∈ U| P (X | [ x ] R ) > β};
R k (X ) = { x ∈ U| | [ x ] R | − | [ x ] R ∩ X | ≤ k } , 

nd the positive region, negative region, upper and lower boundary

egion of (U, R (α,β) , R k ) are defined as follows: 

pos 
′ 
(X ) = R (α,β) (X ) ∩ R k (X ) ; neg 

′ 
(X ) = ∼ ( R (α,β) (X ) ∪ R k (X )) ;

Ubn 

′ 
(X ) = R (α,β) (X ) − R k (X ) ; Lbn 

′ 
(X ) = R k (X ) − R (α,β) (X ) , 

aturally, we have the followng decision rules: 

(P 
′ 
) If P ( X |[ x ] R ) > β , | [ x ] R | − | [ x ] R ∩ X| ≤ k, decide x ∈ pos 

′ 
(X ) ; 

(N 

′ 
) If P ( X |[ x ] R ) ≤ β , | [ x ] R | − | [ x ] R ∩ X| > k, decide x ∈ neg 

′ 
(X ) ; 

(UB 
′ 
) If P ( X |[ x ] R ) > β , | [ x ] R | − | [ x ] R ∩ X| > k, decide x ∈ Ubn 

′ 
(X ) ;

(LB 
′ 
) If P ( X |[ x ] R ) ≤ β , | [ x ] R | − | [ x ] R ∩ X| ≤ k, decide x ∈ Lbn 

′ 
(X ) . 

The second kind of double-quantitative decision-rough set

DqII-DTRS) denoted by (U, R k , R (α,β) ) is defined by using approxi-

ation operators R k and R ( α, β) , where the core mapping are pre-

ented by the following approximations: 

R k (X ) = { x ∈ U|| [ x ] R ∩ X| > k }; R (α,β) (X ) = { x ∈ U| P (X| [ x ] R ) ≥ α} . 
Accordingly, the positive region, negative region, upper and

ower boundary region of (U, R k , R (α,β) ) are stated as follows: 

pos 
′′ 
(X ) = R k (X ) ∩ R (α,β) (X ) ; neg 

′′ 
(X ) = ∼ ( R k (X ) ∪ R (α,β) (X )) ;

Ubn 

′′ 
(X ) = R k (X ) − R (α,β) (X ) ; Lbn 

′′ 
(X ) = R (α,β) (X ) − R k (X ) . 

aturally, we have the decision rules: 

(P 
′′ 
) If P ( X |[ x ] R ) ≥ α, |[ x ] R ∩ X | > k , decide x ∈ pos 

′′ 
(X ) ; 

(N 

′′ 
) If P ( X |[ x ] R ) < α, |[ x ] R ∩ X | ≤ k , decide x ∈ neg 

′′ 
(X ) ; 

(UB 
′′ 
) If P ( X |[ x ] R ) < α, |[ x ] R ∩ X | > k , decide x ∈ Ubn 

′′ 
(X ) ; 

(LB 
′′ 
) If P ( X |[ x ] R ) ≥ α, |[ x ] R ∩ X | ≤ k , decide x ∈ Lbn 

′′ 
(X ) . 

. Generalized multigranulation double-quantitative 

ecision-theoretic rough sets 

DqI-DTRS and DqII-DTRS introduce a pair of relative and abso-

ute quantitative measures into the classical model. They have id-

ographic quantitative semantics and strong double fault tolerance

apabilities, and can adapt to complex environments. In many real

pplications such as multi-source data analysis, knowledge discov-

ry from data with high dimensions and distributive information

ystems, the multigranulation version of Dq-DTRS will be very de-

irable when decision-theoretic rough sets are applied to these

ases. In this section, we will establish a generalized multigranu-

ation double-quantitative decision-theoretic rough set framework.

n the following, it should be point out that k ( k is a non-negative

nteger) represents the grade of overlap between an equivalence

lass and a set to be approximated, αi and β i represent parame-

ers of the DTRS model. 

.1. The first kind of generalized multigranulation double-quantitative 

ecision-theoretic rough set 

According to the literature [38] , we know that the classical gen-

ralized multigranulation lower approximate consists of all objects,

hose number of granulations satisfied x ∈ A i ( X ) not greater than

 ϕ, and the upper approximation consists of all objects, whose

umber of granulations satisfied x ∈ A i (X ) greater than s (1 − ϕ) .

ombining the above idea, the lower and upper approximations of

eneralized multigranulation double-quantitative rough sets shown

s following. 

efinition 3.1. Let I = (U, AT , V, F ) be an information system, A i ⊆
T , i = 1 , 2 , · · · , s (s ≤ 2 AT ) , ϕ ∈ (0.5, 1]. In the first kind of general-

zed multigranulation double-quantitative rough set(GMDqIRS), the
ower and upper approximations of an arbitrary subset X with re-

pect to 
∑ S 

i =1 A i can be defined as 

M 

I ∑ S 
i =1 A i 

(X ) = { x ∈ U | ( 
S ∑ 

i =1 

U SI A i 
X 
(x )) /s > 1 − ϕ} , 

M 

I ∑ S 
i =1 A i 

(X ) = { x ∈ U| ( 
S ∑ 

i =1 

LSI A i 
X 
(x )) /s ≥ ϕ} , 

espectively, where USI 
A i 
X 

(x ) is the first kind of upper support char-

cteristic function of x ∈ U with respect to concept X under A i , 

SI A i 
X 
(x ) = 

{
1 , if P (X | [ x ] A i ) > βi ;
0 , other. 

(1) 

nd LSI 
A i 
X 

(x ) is the first kind of lower support characteristic func-

ion of x ∈ U with respect to concept X under A i ; 

SI A i 
X 
(x ) = 

{
1 , if | [ x ] A i | − | [ x ] A i ∩ X | ≤ k ;
0 , other. 

(2) 

 is called a level of information with respect to 
∑ S 

i =1 A i . X is

alled a definable set with respect to 
∑ S 

i =1 A i , if and only if

M 

I ∑ S 
i =1 A i 

(X ) = GM 

I ∑ S 
i =1 A i 

(X ) ; otherwise, X is called a rough set

ith respect to 
∑ S 

i =1 A i . 

By the lower approximation GM 

I ∑ S 
i =1 A i 

(X ) and upper approxi-

ation GM 

I ∑ S 
i =1 A i 

(X ) , the positive region, negative region, upper

nd lower boundary region of X are expressed as: 

pos I (X ) = GM 

I ∑ S 
i =1 A i 

(X ) ∩ GM 

I ∑ S 
i =1 A i 

(X ) ;

neg I (X ) = ∼ ( GM 

I ∑ S 
i =1 A i 

(X ) ∪ GM 

I ∑ S 
i =1 A i 

(X )) ;

bn 

I (X ) = GM 

I ∑ S 
i =1 A i 

(X ) − GM 

I ∑ S 
i =1 A i 

(X ) ;

Lbn 

I (X ) = GM 

I ∑ S 
i =1 A i 

(X ) − GM 

I ∑ S 
i =1 A i 

(X ) . 

Combining the extreme types of optimism and pessimism, we

an get the first kind of optimistic and pessimistic multigranula-

ion lower and upper approximations of x with respect to 
∑ S 

i =1 A i ,

hich can be expressed as follows: 

M 

I ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∧ 

S 
i =1 (P (X | [ x ] A i ) > βi ) };

M 

I ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∨ 

s 
i =1 (| [ x ] A i | − | [ x ] A i ∩ X | ≤ k ) } 

 M 

I ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∨ 

S 
i =1 (P (X | [ x ] A i ) > βi ) };

 M 

I ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∧ 

s 
i =1 (| [ x ] A i | − | [ x ] A i ∩ X | ≤ k ) } 

nd expressions of other regions are analogous to that used above.

Considering the relationship during optimistic, pessimistic and

eneralized multigranulation ,the following conclusions are true. 

roposition 3.1. Let I = (U, AT , V, F ) be an information system, A i ⊆
T , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U, the follow-

ng conclusions hold: 

P M 

I ∑ S 
i =1 A i 

(X ) ⊆ GM 

I ∑ S 
i =1 A i 

(X ) ⊆ OM 

I ∑ S 
i =1 A i 

(X ) , OM 

I ∑ S 
i =1 A i 

(X ) ⊆
M 

I ∑ S 
i =1 A i 

(X ) ⊆ P M 

I ∑ S 
i =1 A i 

(X ) . 

roof. It can be easily verified by definitions of generalized, opti-

istic and pessimistic multigranulation double-quantitative rough 

ets. 

Considering the relationship between the multigranulation and

ingle granular structure, we have the following conclusions. �
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Proposition 3.2. Let I = (U, AT , V, F ) be an information system, A i ⊆
AT , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U, the follow-

ing conclusions hold: 

OM 

I ∑ S 
i =1 A i 

(X ) ⊆ A i (αi ,βi ) 
(X ) , OM 

I ∑ S 
i =1 A i 

(X ) ⊇ A i k 
(X ) , 

P M 

I ∑ S 
i =1 A i 

(X ) ⊇ A i (αi ,βi ) 
(X ) , P M 

I ∑ S 
i =1 A i 

(X ) ⊆ A i k 
(X ) . 

Proof. The result holds trivially according to definitions of opti-

mistic and pessimistic multigranulation double-quantitative rough

sets. 

Considering the relationship between the multigranulation

and all the single granular structure, the following conclusions

hold. �

Proposition 3.3. Let I = (U, AT , V, F ) be an information system, A i ⊆
AT , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U, we have 

OM 

I ∑ S 
i =1 A i 

(X ) = 

⋂ s 
i =1 A i (αi ,βi ) 

(X ) , OM 

I ∑ S 
i =1 A i 

(X ) = 

⋃ s 
i =1 A i k 

(X ) , 

P M 

I ∑ S 
i =1 A i 

(X ) = 

⋃ s 
i =1 A i (αi ,βi ) 

(X ) , P M 

I ∑ S 
i =1 A i 

(X ) = 

⋂ s 
i =1 A i k 

(X ) . 

Proof. The assertion follows immediately from definitions of opti-

mistic and pessimistic multigranulation double-quantitative rough

sets. 

Based on the idea of three-way decisions and definition of the

first kind of the generalized multigranulation double-quantitative

rough set, we have the decision rules as follows: �

Rules 3.1. Let I = (U, AT , V, F ) be an information system, A i ⊆
AT , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U , decision

rules can be expressed as follows: 

( P I ) If | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩
X| ≤ k | ≥ sϕ, decide x ∈ pos I ( X ); 

( N 

I ) If | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩
X| ≤ k | < sϕ, decide x ∈ neg I ( X ); 

( UB I ) If | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩
X| ≤ k | < sϕ, decide x ∈ Ubn I ( X ); 

( LB I ) If | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩
X| ≤ k | ≥ sϕ, decide x ∈ Lbn I ( X ). 

According to rules 3.1 , if the number of granulations satis-

fying P (X| [ x ] A i ) > βi is greater than s (1 − ϕ) , and the number

of granulations satisfying | [ x ] A i | − | [ x ] A i ∩ X| ≤ k is not smaller than

s ϕ, decide x ∈ pos I ( X ); if the number of granulations satisfy-

ing P (X| [ x ] A i ) > βi is not greater than s (1 − ϕ) , and the num-

ber of granulations satisfying | [ x ] A i | − | [ x ] A i ∩ X| ≤ k is smaller than

s ϕ, decide x ∈ neg I ( X ); if the number of granulations satisfying

P (X| [ x ] A i ) > βi is greater than s (1 − ϕ) , and the number of gran-

ulations satisfying | [ x ] A i | − | [ x ] A i ∩ X| ≤ k is smaller than s ϕ, decide

x ∈ Ubn I ( X ); if the number of granulations satisfying P (X| [ x ] A i ) > βi

is not greater than s (1 − ϕ) , and the number of granulations sat-

isfying | [ x ] A i | − | [ x ] A i ∩ X| ≤ k is not smaller than s ϕ, decide x ∈
Lbn I ( X ). 

The optimistic multigranulation rough set only need one gran-

ular structure to satisfy with corresponding relationship between

equivalence class and the approximated target. Combining the idea

of optimism, we can obtain decision rules, which are 

( P I ) If | A i : P (X| [ x ] A i ) > βi | = s, | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥ 1 ,

decide x ∈ pos I ( X ); 

( N 

I ) If | A i : P (X| [ x ] A i ) ≤ βi | ≥ 1 , | A i : | [ x ] A i | − | [ x ] A i ∩ X| > k | = s,

decide x ∈ neg I ( X ); 

( UB I ) If | A i : P (X| [ x ] A i ) > βi | = s, | A i : | [ x ] A i | − | [ x ] A i ∩ X| > k | = s,

decide x ∈ Ubn I ( X ); 

( LB I ) If | A i : P (X| [ x ] A i ) ≤ βi | ≥ 1 , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
1 , decide x ∈ Lbn I ( X ). 
Particularly, if all granulations satisfy P (X| [ x ] A i ) > βi , and at

east one granulation satisfies | [ x ] A i | − | [ x ] A i ∩ X| ≤ k, decide x

 pos I ( X ); if at least one granulation satisfies P (X| [ x ] A i ) ≤ βi ,

nd all granulations satisfy | [ x ] A i | − | [ x ] A i ∩ X| > k, decide x ∈
eg I ( X ); if all granulations satisfy P (X| [ x ] A i ) > βi and | [ x ] A i | −
 [ x ] A i ∩ X| > k, decide x ∈ Ubn I ( X ); if at least one granula-

ion satisfies P (X| [ x ] A i ) ≤ βi and | [ x ] A i | − | [ x ] A i ∩ X| ≤ k, decide

 ∈ Lbn I ( X ). 

Based on SCED (seeking common ground while eliminating dif-

erences) strategy, the pessimistic multigranulation rough set re-

uire all granular structures to satisfy with the corresponding re-

ationship between equivalence class and the approximated target.

ombining the idea of pessimism, we can gain the following deci-

ion rules: 

( P I ) If | A i : P (X| [ x ] A i ) > βi | ≥ 1 , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | = s,

ecide x ∈ pos I ( X ); 

( N 

I ) If | A i : P (X| [ x ] A i ) ≤ βi | = s, | A i : | [ x ] A i | − | [ x ] A i ∩ X| > k | ≥ 1 ,

ecide x ∈ neg I ( X ); 

( UB I ) If | A i : P (X| [ x ] A i ) > βi | ≥ 1 , | A i : | [ x ] A i | − | [ x ] A i ∩ X| > k | ≥
 , decide x ∈ Ubn I ( X ); 

( LB I ) If | A i : P (X| [ x ] A i ) ≤ βi | = s, | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | = s,

ecide x ∈ Lbn I ( X ). 

Correspondingly, if at least one granulation satisfies P (X| [ x ] A i ) >
i , and all granulations satisfy | [ x ] A i | − | [ x ] A i ∩ X| ≤ k, decide

 ∈ pos I ( X ); if all granulations satisfy P (X| [ x ] A i ) ≤ βi , and at

east one granulation satisfies | [ x ] A i | − | [ x ] A i ∩ X| > k, decide x

 neg I ( X ); if at least one granulation satisfies P (X| [ x ] A i ) > βi

nd | [ x ] A i | − | [ x ] A i ∩ X| > k, decide x ∈ Ubn I ( X ); if all granu-

ations satisfy P (X| [ x ] A i ) ≤ βi and | [ x ] A i | − | [ x ] A i ∩ X| ≤ k, decide

 ∈ Lbn I ( X ). 

In order to measure the classification ability, the definition of

he approximation accuracy under multiple granular structures is

roposed. 

efinition 3.2. Let DS = (U, AT ∪ DT , V, F ) be an information sys-

em, A i ⊆ AT , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . And U/DT = { Y 1 , Y 2 , · · · , Y m 

}
e a classification of universe U . In the first kind of generalized

ultigranulation double-quantitative rough set(GMDqI-DTRS), the

pproximation accuracy of U / DT with respect to 
∑ S 

i =1 A i is defined

s 

∑ S 
i =1 A i 

(U/DT ) = 

∑ 

Y i ∈ U/DT | GM 

I ∑ S 
i =1 A i 

(Y i ) | ∑ 

Y i ∈ U/D | GM 

I ∑ S 
i =1 A i 

(Y i ) | 
, 

here GM 

I ∑ S 
i =1 A i 

(Y i ) = { x ∈ U | ( 
∑ S 

i =1 U SI 
A i 
Y i 

(x )) /s > 1 − ϕ} and

M 

I ∑ S 
i =1 A i 

(Y i ) = { x ∈ U| ( ∑ S 
i =1 LSI 

A i 
Y i 

(x )) /s ≥ ϕ} . 

.2. The second kind of generalized multigranulation 

ouble-quantitative decision-theoretic rough set 

First of all, we present the definition of the second kind of

ower and upper approximations. 

efinition 3.3. Let I = (U, AT , V, F ) be an information system, A i ⊆
T , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . In the second kind of generalized multi-

ranulation double-quantitative rough set (GMDqIIRS), the lower

nd upper approximations of an arbitrary subset X with respect

o 
∑ S 

i =1 A i can be defined as 
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M 

II ∑ S 
i =1 A i 

(X ) = { x ∈ U : ( 
S ∑ 

i =1 

USI I A i 
X 
(x )) /s > 1 − ϕ};

M 

II ∑ S 
i =1 A i 

(X ) = { x ∈ U : ( 
S ∑ 

i =1 

LSI I A i 
X 
(x )) /s ≥ ϕ} 

espectively, where USI I 
A i 
X 

(x ) is the second kind of upper support

haracteristic function of x ∈ U with respect to concept X under A i ,

SI I A i 
X 
(x ) = 

{
1 , if | [ x ] A i ∩ X | > k ;
0 , other. 

(3)

nd LSI I 
A i 
X 

(x ) is the second kind of lower support characteristic

unction of x ∈ U with respect to concept X under A i , 

SI I A i 
X 
(x ) = 

{
1 , if P (X | [ x ] A i ) ≥ αi ;
0 , other. 

(4)

 is called a level of information with respect to 
∑ S 

i =1 A i . X is

alled a definable set with respect to 
∑ S 

i =1 A i , if and only if

M 

II ∑ S 
i =1 A i 

(X ) = GM 

II ∑ S 
i =1 A i 

(X ) ; otherwise X is rough. 

By the lower approximation GM 

II ∑ S 
i =1 A i 

(X ) and upper approxi-

ation GM 

II ∑ S 
i =1 A i 

(X ) , the positive region, negative region, upper

nd lower boundary region of X are as following: 

pos II (X ) = GM 

II ∑ S 
i =1 A i 

(X ) ∩ GM 

II ∑ S 
i =1 A i 

(X ) ;

neg II (X ) = ∼ ( GM 

II ∑ S 
i =1 A i 

(X ) ∪ GM 

II ∑ S 
i =1 A i 

(X )) ;

bn 

II (X ) = GM 

II ∑ S 
i =1 A i 

(X ) − GM 

II ∑ S 
i =1 A i 

(X ) ;

Lbn 

II (X ) = GM 

II ∑ S 
i =1 A i 

(X ) − GM 

II ∑ S 
i =1 A i 

(X ) . 

Then the second kind of optimistic and pessimistic multigranu-

ation lower and upper approximations of X with respect to 
∑ S 

i =1 A i 

an be stated as follows: 

M 

II ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∧ 

S 
i =1 (| [ x ] A i ∩ X | > k ) };

M 

II ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∨ 

s 
i =1 (P (X | [ x ] A i ) ≥ αi ) } 

 M 

II ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∨ 

S 
i =1 (| [ x ] A i ∩ X | > k ) };

 M 

II ∑ S 
i =1 A i 

(X ) = { x ∈ U| ∧ 

s 
i =1 (P (X | [ x ] A i ) ≥ αi ) } 

nd other regions can be obtained by the same way like above. 

From the definitions of generalized, optimistic and pessimistic

ultigranulation double-quantitative rough set, there are proposi-

ions can be induced as follows: 

roposition 3.4. Let I = (U, AT , V, F ) be an information system, A i ⊆
T , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U, the follow-

ng conclusions hold trivially. 

P M 

II ∑ S 
i =1 A i 

⊆ GM 

II ∑ S 
i =1 A i 

⊆ OM 

II ∑ S 
i =1 A i 

, OM 

II ∑ S 
i =1 A i 

⊆ GM 

II ∑ S 
i =1 A i 

⊆
 M 

II ∑ S 
i =1 A i 

. 

When considering the relationship between multiple granular

tructures and single granular structure, the following conclusions

old trivially, namely, 

OM 

II ∑ S 
i =1 A i 

(X ) ⊆ A i k (X ) , OM 

II ∑ S 
i =1 A i 

(X ) ⊇ A i k 
(X ) , 

P M 

II ∑ S 
i =1 A i 

(X ) ⊇ A i k (X ) , P M 

II ∑ S 
i =1 A i 

(X ) ⊆ A i (αi ,βi ) 
(X ) . 

When thinking about the relationship between multiple granular

tructures and the set of single granular structure, the following con-

lusions hold obviously: 
OM 

II ∑ S 
i =1 A i 

(X ) = 

⋂ s 
i =1 A i k (X ) , OM 

II ∑ S 
i =1 A i 

(X ) = 

⋃ s 
i =1 A i (αi ,βi ) 

(X ) , 

P M 

II ∑ S 
i =1 A i 

(X ) = 

⋃ s 
i =1 A i k (X ) , P M 

II ∑ S 
i =1 A i 

(X ) = 

⋂ s 
i =1 A i (αi ,βi ) 

(X ) 

Based on the idea of three-way decisions and definition of the

econd kind of the generalized multigranulation double-quantitative

ough set, we have the following decision rules: 

ules 3.2. Let I = (U, AT , V, F ) be an information system, A i ⊆
T , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U , decision

ules can be expressed as follows: 

( P II ) If | A i : | [ x ] A i ∩ X| > k | > s (1 − ϕ) , | A i : P (X| [ x ] A i ) ≥ αi | ≥ sϕ,

ecide x ∈ pos II ( X ); 

( N 

II ) If | A i : | [ x ] A i ∩ X| > k | ≤ s (1 − ϕ) , | A i : P (X| [ x ] A i ) ≥ αi | < sϕ,

ecide x ∈ neg II ( X ); 

( UB II ) If | A i : | [ x ] A i ∩ X| > k | > s (1 − ϕ) , | A i : P (X| [ x ] A i ) ≥ αi | <
ϕ, decide x ∈ Ubn II ( X ); 

( LB II ) If | A i : | [ x ] A i ∩ X| > k | ≤ s (1 − ϕ) , | A i : P (X| [ x ] A i ) ≥ αi | ≥
ϕ, decide x ∈ Lbn II ( X ). 

According to rules 3.2 , if the number of granulations satisfying

 [ x ] A i ∩ X| > k is greater than s (1 − ϕ) , and the number of granu-

ations satisfying P (X| [ x ] A i ) ≥ αi is not smaller than s ϕ, decide x

 pos II ( X ); if the number of granulations satisfying | [ x ] A i ∩ X| > k

s not greater than s (1 − ϕ) , and the number of granulations sat-

sfying P ( X |[ x ] R ) ≥ αi smaller than s ϕ, decide x ∈ neg II ( X ); if the

umber of granulations satisfying | [ x ] A i ∩ X| > k is greater than

 (1 − ϕ) , and the number of granulations satisfying P (X| [ x ] A i ) ≥ αi 

s smaller than s ϕ, decide x ∈ Ubn II ( X ); if the number of granu-

ations satisfying | [ x ] A i ∩ X| > k is not greater than s (1 − ϕ) , and

he number of granulations satisfying P (X| [ x ] A i ) ≥ αi is not smaller

han s ϕ, decide x ∈ Lbn II ( X ). 

When thinking over the idea of optimism, we can obtain deci-

ion rules as follows: 

( P II ) If | A i : | [ x ] A i ∩ X| > k | = s, | A i : P (X| [ x ] A i ) ≥ αi | ≥ 1 , decide x

 pos II ( X ); 

( N 

II ) If | A i : | [ x ] A i ∩ X| ≤ k | ≥ 1 , | A i : P (X| [ x ] A i ) < αi | = s, decide

 ∈ neg II ( X ); 

( UB II ) If | A i : | [ x ] A i ∩ X| > k | = s, | A i : P (X| [ x ] R ) < αi | = s, decide

 ∈ Ubn II ( X ); 

( LB II ) If | A i : | [ x ] A i ∩ X| ≤ k | ≥ 1 , | A i : P ( X |[ x ] R ) ≥ αi | ≥ 1, decide x

 Lbn II ( X ). 

Accordingly, if all granulations satisfy | [ x ] A i ∩ X| > k, and at

east one granulation satisfies P (X| [ x ] A i ) ≥ αi , decide x ∈ pos II ( X );

f at least one granulation satisfies | [ x ] A i ∩ X| ≤ k, and all granula-

ions satisfy P (X| [ x ] A i ) < αi , decide x ∈ neg II ( X ); if all granulations

atisfy | [ x ] A i ∩ X| > k and P (X| [ x ] A i ) < αi , decide x ∈ Ubn II ( X ); if

t least one granulation satisfies | [ x ] A i ∩ X| ≤ k and P (X| [ x ] A i ) ≥ αi ,

ecide x ∈ Lbn II ( X ). 

When considering the idea of pessimism, we can obtain deci-

ion rules as follows: 

( P II ) If | A i : | [ x ] A i ∩ X| > k | ≥ 1 , | A i : P (X| [ x ] A i ) ≥ αi | = s, decide x

 pos II ( X ); 

( N 

II ) If | A i : | [ x ] A i ∩ X| ≤ k | = s, | A i : P (X| [ x ] A i ) < αi | ≥ 1 , decide

 ∈ neg II ( X ); 

( UB II ) If | A i : | [ x ] A i ∩ X| > k | ≥ 1 , | A i : P (X| [ x ] A i ) < αi | ≥ 1 , decide

 ∈ Ubn II ( X ); 

( LB II ) If | A i : | [ x ] v ∩ X| ≤ k | = s, | A i : P (X| [ x ] A i ) ≥ αi | = s, decide x

 Lbn II ( X ). 

Correspondingly, if at least one granulation satisfies | [ x ] A i ∩ X| >
, and all granulations satisfy P (X| [ x ] A i ) ≥ αi , decide x ∈ pos II ( X ); if

ll granulations satisfy | [ x ] A i ∩ X| ≤ k , and at least one granulation

atisfies P ( X |[ x ] R ) < αi , decide x ∈ neg II ( X ); if at least one granula-

ion satisfies | [ x ] A i ∩ X| > k and P (X| [ x ] A i ) < αi , decide x ∈ Ubn II ( X );
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if all granulations satisfy | [ x ] A i ∩ X| ≤ k and P (X| [ x ] A i ) ≥ αi , decide

x ∈ Lbn II ( X ). 

The Dq-DTRS model degenerates to the Pawlak model when

α = 1 , β = 0 , k = 0 . So we can known two kinds of the general-

ized multigranulation double-quantitative decision-theoretic rough

set are all equivalent to the generalized multigranulation rough set

when αi = 1 , βi = 0 , k = 0 . Certainly, the two kinds of the general-

ized multigranulation double-quantitative decision-theoretic rough

set are also equivalent. Especially,optimistic and pessimistic multi-

granulation double-quantitative decision-theoretic rough sets de-

generate to the optimistic multigranulation rough set and pes-

simistic multigranulation rough set. 

At the same time, the uncertainty measure of the second

kind of generalized multigranulation double-quantitative rough

set(GMDqII-DTRS) is also proposed. 

Definition 3.4. Let DS = (U, AT ∪ DT , V, F ) be an information sys-

tem, A i ⊆ AT , i = 1 , 2 , · · · , s (s ≤ 2 AT ) . And U/DT = { Y 1 , Y 2 , · · · , Y m 

}
be a classification of universe U . In the second kind of generalized

multigranulation double-quantitative rough set(GMDqII-DTRS), the

approximation accuracy of U / DT with respect to 
∑ S 

i =1 A i is defined

as 

α∑ S 
i =1 A i 

(U/DT ) = 

∑ 

Y i ∈ U/DT | GM 

II ∑ S 
i =1 A i 

(Y i ) | ∑ 

Y i ∈ U/D | GM 

II ∑ S 
i =1 A i 

(Y i ) | 
, 

where GM 

II ∑ S 
i =1 A i 

(Y i ) = { x ∈ U : ( 
∑ S 

i =1 USI I 
A i 
Y i 

(x )) /s > 1 − ϕ} and

GM 

II ∑ S 
i =1 A i 

(Y i ) = { x ∈ U : ( 
∑ S 

i =1 LSI I 
A i 
Y i 

(x )) /s ≥ ϕ} . 

3.3. Comparison 

In the subsection, we deeply explored the relationship between

GMDqI-DTRS and GMDqII-DTRS, the internal connection between

the generalized multigranulation double-quantitative decision-

theoretic rough set(GMDq-DTRS) and the generalized multigran-

ulation rough set(GMRS), the inherent relations between GMDq-

DTRS and double-quantitative decision-theoretic rough set (Dq-

DTRS), and the relationship between GMDq-DTRS and variable pre-

cision rough set(VRS). 

(1) The relationship between GMDqI-DTRS and GMDqII-DTRS 

According to decision-theoretic rough set, if the foss function

satisfies λi 
PP 

≤ λi 
BP 

< λi 
NP 

, λi 
NN 

≤ λi 
BN 

< λi 
PN 

and (λi 
BP 

− λi 
PP 

)(λi 
BN 

−
λi 

NN 
) ≤ (λi 

NP 
− λi 

BP 
)(λi 

PN 
− λi 

BN 
) , we have αi > β i , i = 1 , 2 , · · · , s . At

the same time, for the same k , we discuss the relationship between

the value of αi + βi and 1. 

When αi + βi = 1 , i = 1 , 2 , · · · , s, there are following

conclusions 

(1) | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
sϕ
⇔ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
s (1 − ϕ) . 

(2) | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | <
sϕ
⇔ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | ≥ sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | > 

s (1 − ϕ) . 

(3) | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | <
sϕ
⇔ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | > 

s (1 − ϕ) . 

(4) | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
sϕ
⇔ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | ≥ sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
s (1 − ϕ) . 

The reasoning process is stated as follows. According to αi +
i = 1 , it is true for i = 1 , 2 , · · · , s that αi = 1 − βi , and P (X| [ x ] A i ) >
i , | [ x ] A i | − | [ x ] A i ∩ X| ≤ k is equivalent to P (∼ X| [ x ] A i ) <
 − βi , ‖ [ x ] A i ∩ (∼ X ) | ≤ k . So it is true that | A i : P (X| [ x ] A i ) > βi | >
 (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥ sϕ is equivalent to

 A i : P (∼ X| [ x ] A i ) < 1 − βi | > s (1 − ϕ) , | A i : | [ x ] A i ∩ (∼ X ) | ≤ k | ≥ sϕ. 

y substituting αi = 1 − βi into the latter, we obtain

 A i : P (∼ X| [ x ] A i ) < αi | > s (1 − ϕ) , | A i : | [ x ] A i ∩ (∼ X ) | ≤ k | ≥ sϕ. 

t the same time, | A i : P (∼ X| [ x ] A i ) < αi | > s (1 − ϕ) is equivalent

o | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, and | A i : | [ x ] A i ∩ (∼ X ) | ≤ k | ≥ sϕ
s equivalent to | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤ s (1 − ϕ) . Then the proof

f the first conclusion is now completed. Other conclusions can be

roved by the same method as employed in the first conclusion. 

At above case, the loss function must satisfy (λi 
BP 

− λi 
PP 

)(λi 
NP 

−
i 
BP 

) = (λi 
PN 

− λi 
BN 

)(λi 
BN 

− λi 
NN 

) . From above conclusions, we can

now that the accepted region of X in GMDqI-DTRS is equivalent

o the rejective region of ∼ X in GMDqII-DTRS, the rejective region

f X in GMDqI-DTRS is equivalent to the accepted region of ∼ X in

MDqII-DTRS, the upper and lower delayed regions of X and ∼ X

re identical for both GMDqI-DTRS and GMDqII-DTRS. 

When αi + βi < 1 , i = 1 , 2 , · · · , s, there are following conclu-

ions 

(1) | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
sϕ
⇐ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
s (1 − ϕ) . 

(2) | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | <
sϕ
⇒ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | ≥ sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | > 

s (1 − ϕ) . 

(3) | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | <
sϕ
⇐ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | > 

s (1 − ϕ) . 

(4) | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
sϕ
⇒ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | ≥ sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
s (1 − ϕ) . 

The analysis can be stated as follows. In accordance

ith αi + βi < 1 , it is true for i = 1 , 2 , · · · , s that αi < 1 − βi ,

nd P (X| [ x ] A i ) > βi , | [ x ] A i | − | [ x ] A i ∩ X| ≤ k is equivalent to

 (∼ X| [ x ] A i ) < 1 − βi , ‖ [ x ] A i ∩ (∼ X ) | ≤ k . So we can get that

 A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
ϕ is equivalent to | A i : P (∼ X| [ x ] A i ) < 1 − βi | > s (1 −
) , | A i : | [ x ] A i ∩ (∼ X ) | ≤ k | ≥ sϕ. At the same time,

 A i : P (∼ X| [ x ] A i ) < 1 − βi | > s (1 − ϕ) is equivalent to

 A i : P (∼ X| [ x ] A i ) ≥ 1 − βi | < sϕ , and | A i : | [ x ] A i ∩ (∼ X ) | ≤ k | ≥
ϕ is equivalent to | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤ s (1 −
) . On the basis of αi < 1 − βi , it is true that

 A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤ s (1 − ϕ) 

mplies | A i : P (∼ X| [ x ] A i ) ≥ 1 − βi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
 (1 − ϕ) . Then the proof of the first conclusion is now completed.

ther conclusions can be proved by the same method as employed

n the first conclusion. 

At above case, the foss function must satisfy (λi 
BP 

− λi 
PP 

)(λi 
NP 

−
i 
BP 

) > (λi 
PN 

− λi 
BN 

)(λi 
BN 

− λi 
NN 

) . From above conclusions, we can

btain that the rejective region and lower delayed region of X in

MDqI-DTRS are contained in the accepted region and lower de-

ayed region of ∼ X in GMDqII-DTRS, respectively; the rejective re-

ion and upper delayed region of ∼ X in GMDqII-DTRS are con-

ained in the accepted region and upper delayed region of X in

MDqI-DTRS, respectively Table 1 . 
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Table 1 

The relationship between GMDqI-DTRS and GMDqII-DTRS. 

Cases relationships 

αi + βi = 1 pos I (X ) = neg II (∼ X ) neg I (X ) = pos II (∼ X ) Ubn I (X ) = Ubn II (∼ X ) Lbn I (X ) = Lbn II (∼ X ) 

αi + βi < 1 pos I ( X ) ⊇neg II ( ∼ X ) neg I ( X ) ⊆pos II ( ∼ X ) Ubn I ( X ) ⊇Ubn II ( ∼ X ) Lbn I ( X ) ⊆Lbn II ( ∼ X ) 

αi + βi > 1 pos I ( X ) ⊆neg II ( ∼ X ) neg I ( X ) ⊇pos II ( ∼ X ) Ubn I ( X ) ⊆Ubn II ( ∼ X ) Lbn I ( X ) ⊇Lbn II ( ∼ X ) 
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When αi + βi > 1 , i = 1 , 2 , · · · , s, there are following

onclusions 

(1) | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
sϕ
⇒ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
s (1 − ϕ) . 

(2) | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | <
sϕ
⇐ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | ≥ sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | > 

s (1 − ϕ) . 

(3) | A i : P (X| [ x ] A i ) > βi | > s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | <
sϕ
⇒ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | < sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | > 

s (1 − ϕ) . 

(4) | A i : P (X| [ x ] A i ) > βi | ≤ s (1 − ϕ) , | A i : | [ x ] A i | − | [ x ] A i ∩ X| ≤ k | ≥
sϕ
⇐ | A i : P ((∼ X ) | [ x ] A i ) ≥ αi | ≥ sϕ, | A i : | [ x ] A i ∩ (∼ X ) | > k | ≤
s (1 − ϕ) . 

The reasoning method analogous to that used above. At

bove case, the foss function must satisfy (λi 
BP 

− λi 
PP 

)(λi 
NP 

− λi 
BP 

) <

(λi 
PN 

− λi 
BN 

)(λi 
BN 

− λi 
NN 

) . Above all, we can understand that the ac-

epted region and upper delayed region of X in GMDqI-DTRS are

ontained in the rejective region and upper delayed region of ∼ X

n GMDqII-DTRS, respectively; the accepted region and lower de-

ayed region of ∼ X in GMDqII-DTRS are contained in the rejective

egion and lower delayed region of X in GMDqI-DTRS, respectively.

Intuitively, internal relations of the two models are shown in

ifferent cases as follows: 

(2) The internal connection between GMDq-DTRS and GMRS 

he internal connection between GMDq-DTRS and GMRS can be

learly obtained by the following description. 

Let I = (U, AT , V, F ) be an information system, A i ⊆ AT , i =
 , 2 , · · · , s (s ≤ 2 AT ) . For an arbitrary subset X of U , when βi = 0 , k =
 , the first kind of upper support characteristic function USI 

A i 
X 

(x )

egenerates to characteristic function 1 − S 
A i 
∼X 

(x ) and lower sup-

ort characteristic function LSI 
A i 
X 

(x ) degenerates to support char-

cteristic function S 
A i 
X 

(x ) . Therefore, it is true that GM 

I ∑ S 
i =1 A i 

(X ) =
M 

∑ S 
i =1 A i 

(X ) , GM 

I ∑ S 
i =1 A i 

(X ) = GM 

∑ S 
i =1 A i 

(X ) when βi = 0 , k = 0 . So

MDqI-DTRS is equivalent to GMRS. That is to say, GMDqI-DTRS

s a generalized model of GMRS. 

Furthermore, when β > 0, k > 0, conclusions R (α,β) (X ) ⊆ R (X ) ,

 k ( X ) ⊇ R ( X ) hold in the first kind of double-quantitative rough

et. Therefore, for the same ϕ, it is true that GM 

I ∑ S 
i =1 A i 

(X ) ⊆
M 

∑ S 
i =1 A i 

(X ) , GM 

I ∑ S 
i =1 A i 

(X ) ⊇ GM 

∑ S 
i =1 A i 

(X ) when β > 0, k > 0. So

he positive region of GMDqI-DTRS is bigger than the positive re-

ion of GMRS, the negative region of GMDqI-DTRS is bigger than

he negative region of GMRS. Accordingly, GMDqI-DTRS has a cer-

ain probability of error. In other words, GMDqI-DTRS inherits the

dvantage of Dq-DTRS with a certain probability of error. Moreover,

or an information system DS = (U, AT ∪ DT , V, F ) , the approxima-

ion accuracy of U / DT with respect to 
∑ S 

i =1 A i in GMDqI-DTRS is

igher than the approximation accuracy of GMRS according to the

efinition 3.2 . Similar results can be obtained in the GMDqII-DTRS.
In the information system I = (U, AT , V, F ) , for an arbitrary

ubset X of U , when αi = 1 , k = 0 , the second kind of up-

er support characteristic function USI I 
A i 
X 

(x ) degenerates to char-

cteristic function 1 − S 
A i 
∼X 

(x ) and lower support characteris-

ic function LSI I 
A i 
X 

(x ) degenerates to support characteristic func-

ion S 
A i 
X 

(x ) . Therefore, it is true that GM 

II ∑ S 
i =1 A i 

(X ) = GM 

∑ S 
i =1 A i 

(X ) ,

M 

II ∑ S 
i =1 A i 

(X ) = GM 

∑ S 
i =1 A i 

(X ) when αi = 1 , k = 0 . So GMDqII-DTRS

s equivalent to GMRS. That is to say, GMDqII-DTRS is a general-

zed model of GMRS. 

When αi < 1, k > 0, conclusions R k (X ) ⊆ R (X ) and R ( α, β) ( X ) ⊇
 ( X ) hold in the second kind of double-quantitative rough

et. Therefore, for the same ϕ, it is true that GM 

II ∑ S 
i =1 A i 

(X ) ⊆
M 

∑ S 
i =1 A i 

(X ) , GM 

II ∑ S 
i =1 A i 

(X ) ⊇ GM 

∑ S 
i =1 A i 

(X ) when αi < 1, k > 0. So

he positive region of GMDqII-DTRS is bigger than the positive re-

ion of GMRS, the negative region of GMDqII-DTRS is bigger than

he negative region of GMRS. Therefore, GMDqII-DTRS has a certain

robability of error and the approximation accuracy of U / DT with

espect to 
∑ S 

i =1 A i in GMDqII-DTRS is higher than the approxima-

ion accuracy of GMRS according to the Definition 3.4 . 

It is true that two kinds of the generalized multigranulation

ouble-quantitative decision-theoretic rough set are all equiva-

ent to the generalized multigranulation rough set when αi =
 , βi = 0 , k = 0 . Certainly, when αi = 1 , βi = 0 , k = 0 , the two kinds

f the generalized multigranulation double-quantitative decision-

heoretic rough set are also equivalent. Especially, optimistic and

essimistic multigranulation double-quantitative decision-theoretic 

ough sets degenerate to the optimistic multigranulation rough set

nd pessimistic multigranulation rough set, respectively. When αi 

 1, β i > 0, k > 0, both GMDqI-DTRS and GMDqII-DTRS have a cer-

ain probability of error. Moreover, the approximation accuracy of

MDq-DTRS is higher than the approximation accuracy of GMRS.

hat is to say , the classification ability of GMDq-DTRS is bet-

er than the classification ability of GMRS from the perspective of

he approximation accuracy. Therefore, GMDq-DTRS may be more

ractical in daily life. 

(3) The inherent relation between GMDq-DTRS and Dq-DTRS 

For the level of information ϕ, if x ∈ GM 

I ∑ S 
i =1 A i 

(X ) and x ∈
M 

I ∑ S 
i =1 A i 

(X ) , then there is at least one granular structure A i which

akes x ∈ R (αi ,βi ) 
(X ) and x ∈ R k ( X ). Therefore, an object belongs

o the lower and upper approximations of GMDqI-DTRS implies

his object at least belongs to the lower and upper approxima-

ions of DqI-DTRS under the granular structure. Accordingly, if

 ∈ GM 

II ∑ S 
i =1 A i 

(X ) and x ∈ GM 

II ∑ S 
i =1 A i 

(X ) , then there is at least one

ranular structure A j which makes x ∈ R (α j ,β j ) 
(X ) and x ∈ R k ( X ). In

ther words, an object belongs to the lower and upper approxima-

ions of GMDqII-DTRS implies that this object at least belongs to

he lower and upper approximations of DqII-DTRS under the gran-

lar structure. However, an object belongs to the lower and upper

pproximations of Dq-DTRS under one granular structure does not

mply that this object belongs to the lower and upper approxima-

ions of GMDq-DTRS. Viewed from the overall model, GMDq-DTRS

rovides a more detailed characterization of approximate space.
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From the perspective of fusion, GMDq-DTRS is the information fu-

sion of many Dq-DTRS models. 

(4) The relationship between GMDq-DTRS and variable precision

rough set(VRS) 

In the lower and upper approximations of rough set model, four

kinds of models can be obtained by considering relative quantita-

tive and absolute quantitative information, namely 

1 © The upper approximation is quantified by the relative quan-

titative information and the lower approximation is quan-

tified by the relative quantitative information. The for-

mula is expressed as R (X ) = { x ∈ U| P (X| [ x ] R ) > β} , R (X ) =
{ x ∈ U| P (X| [ x ] R ) ≥ α} . 

2 © The upper approximation is quantified by the absolute quan-

titative information and the lower approximation is quan-

tified by the absolute quantitative information. The for-

mula is expressed as R (X ) = { x ∈ U|| [ x ] R ∩ X| > k } , R (X ) =
{ x ∈ U|| [ x ] R | − | [ x ] R ∩ X| ≤ k } . 

3 © The upper approximation is quantified by the relative quan-

titative information and the lower approximation is quan-

tified by the absolute quantitative information. The for-

mula is expressed as R (X ) = { x ∈ U| P (X| [ x ] R ) > β} , R (X ) =
{ x ∈ U|| [ x ] R | − | [ x ] R ∩ X| ≤ k } . 

4 © The upper approximation is quantified by the absolute

quantitative information and the lower approximation is

quantified by the relative quantitative information. The for-

mula is expressed as R (X ) = { x ∈ U|| [ x ] R ∩ X| > k } , R (X ) =
{ x ∈ U| P (X| [ x ] R ) ≥ α} . 

It is obvious that the first is the decision-theoretic rough set

model(DTRS), the second is grade rough set model(GRS), the third

is the first kind of double-quantitative decision-theoretic rough set

model(DqI-DTRS), and the fourth is the second kind of double-

quantitative decision-theoretic rough set model(DqII-DTRS). It is

well known that the variable precision rough set(VRS) is a spe-

cial model of DTRS in which α + β = 1 . It is evident that the vari-

able precision rough set is the model of relative quantitative in-

formation and Dq-DTRS is the model of relative quantitative and

absolute quantitative information by the combined consideration

of relative and absolute quantification in the lower and upper ap-

proximations. GMDq-DTRS is also a double-quantitative model by

the combined consideration of relative and absolute quantification

in the lower and upper approximations under multiple granular

structures. Therefore, from the perspective of quantization index,

GMDq-DTRS provides a more comprehensive characterization for

the approximate space than the variable precision rough set. From

granular structures, GMDq-DTRS provides a more detailed charac-

terization of approximate space than the variable precision rough

set. 

(5) The comparison between GMDq-DTRS and other models 

With the development of information technology, more and

more data is released every day, and the amount of data is more

and more large. One of the most urgent things is how to make full

use of data to make decisions. Based on the principle of the mi-

nority subordinate to the majority and the combination of relative

and absolute quantification, generalized multigranulation double-

quantitative decision-theoretic rough set(GMDq-DTRS) theory may

provide a comprehensive decision method for mass data. It is well

known that GMDq-DTRS is a generalization of generalized multi-

granulation rough set(GMRS). Recently, there are a lot of research

about multigranulation rough set. Therefore, the detailed compari-

son between GMDq-DTRS and some models is made. 

Feng et al. [29] explored variable precision multigranulation

fuzzy rough sets by using the maximal and minimal membership
egrees of an object with respect to a fuzzy set based on multi-

uzzy tolerance relations and the decision theory of Type-1 variable

recision multigranulation fuzzy rough set was discussed. Their fo-

us are variable precision multigranulation fuzzy rough sets and

ecision-theoretic rough set. The emphasis of this paper are gener-

lized multigranulation and double-quantitative decision-theoretic

ough set. 

Zhang et al. [51] established four kinds of constructive methods

f rough approximation operators from the view point of the union

nd intersection operations of rough approximation pairs. From the

aper, we know that many rough sets(include optimistic and pes-

imistic multigranulation rough sets) are essentially direct appli-

ations of these constructive methods. Their focus are construc-

ive methods of rough approximation operators and multigranula-

ion rough sets. The emphasis of this paper is generalized multi-

ranulation rough approximations which is a general multigranu-

ation rough approximations, and the study is based on double-

uantitative decision-theoretic rough set theory. 

Li et al. [16] investigated the relationship between optimistic

nd pessimistic multigranulation rough sets and concept lattices

ia rule acquisition by the comparison and combination of rough

et theory, granular computing and formal concept analysis. Their

ocus is the relationship of decision rules of optimistic and pes-

imistic multigranulation rough sets and the rules of concept lat-

ices. Our paper also study relationships, but they are the relation-

hip of GMDqI-DTRS and GMDqII-DTRS, the relationship of GMDq-

TRS and GMRS, the relationship of GMDq-DTRS and other models.

Lin et al. [13] proposed the fuzzy multigranulation decision-

heoretic rough set and a comparative study between the fuzzy

odel and Qian’s multigranulation decision-theoretic rough set

odel was made. Their focus is decision-theoretic rough set. The

mphasis of this paper is the combination of decision-theoretic

ough set and grade rough set, namely the double-quantitative

ecision-theoretic rough set. From the perspective of multi-source,

oth Lin’s paper and ours provide methods for multi-source data

nalysis. 

Lin et al. [12] proposed a feature selection method by fusing

ll individual feature rank lists which were obtained based on the

ignificance of features in different granular structures. In terms of

lassification performance, the proposed method can effectively se-

ect a discriminative feature subset and perform as well as or bet-

er than other popular feature selection algorithms. Their focus is

he feature selection by fusion the significance of features under all

ranular structures. Considering the decisions fusion based on the

rinciple of the minority subordinate to the majority, the empha-

is of this paper is exploration of the double-quantitative decision-

heoretic rough set model with strong fault tolerance ability under

ranular structures. 

Yang et al. [47] proposed naive and fast algorithms for updat-

ng the multigranulation rough approximations with the increas-

ng of the granular structures. The most important thing is the

ast algorithm based on the monotonic property of the multigran-

lation rough approximations can effectively reduce the computa-

ional time when facing high dimensional data sets, traditional re-

uction and attribute clustering based reduction. It is mainly focus

n fast updating the optimistic and pessimistic multigranulation

ough approximations. The emphasis of this paper is the construc-

ion of a new model of generalized multigranulation rough approx-

mations based on the combined consideration of relative and ab-

olute quantification in the lower and upper approximations. 

. Case study and application 

Compared with classical rough set theory, generalized multi-

ranulation double-quantitative decision-theoretic rough sets have

 certain fault tolerance capability. Compared with the generalized
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Table 2 

Cars data. 

Cars Design Model Color Beauty Cars Design Model Color Beauty 

x 1 1 0 0 0 x 11 1 1 0 0 

x 2 0 0 1 1 x 12 0 1 2 1 

x 3 1 2 2 0 x 13 2 0 1 0 

x 4 1 1 2 1 x 14 0 0 2 0 

x 5 1 0 0 1 x 15 1 0 1 1 

x 6 2 2 2 1 x 16 2 1 2 1 

x 7 2 1 1 0 x 17 1 1 1 0 

x 8 0 2 0 0 x 18 0 1 1 0 

x 9 2 2 1 1 x 19 2 0 0 1 

x 10 0 2 1 1 x 20 2 2 0 0 

Table 3 

Statistical results of car classes under the granular structure A 1. 

( i, j ) [ x ] A 1 | [ x ] A 1 | [ x ] A 1 ∩ X | [ x ] A 1 ∩ X| P(X| [ x ] A 1 ) | [ x ] A 1 | − | [ x ] A 1 ∩ X| 
(0, 0) x 2, 14 2 x 2 1 1/2 1 

(0, 1) x 12, 18 2 x 12 1 1/2 1 

(0, 2) x 8, 10 2 x 10 1 1/2 1 

(1, 0) x 1, 5, 15 3 x 5, 15 2 2/3 1 

(1, 1) x 4, 11, 17 3 x 4 1 1/3 2 

(1, 2) x 3 1 ∅ 0 0 1 

(2, 0) x 13, 19 2 x 19 1 1/2 1 

(2, 1) x 7, 16 2 x 16 1 1/2 1 

(2, 2) x 6, 9, 20 3 x 6, 9 2 2/3 1 
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m  
ultigranulation rough set, generalized multigranulation double-

uantitative decision-theoretic rough sets consider relative and ab-

olute quantitative information between the class and concept, so

he classification ability is better than GMRS from the perspec-

ive of the approximation accuracy. Meanwhile, compared with

he double-quantitative decision-theoretic rough set, generalized

ultigranulation double-quantitative decision-theoretic rough sets 

rovide a feasible decision method that is the minority subordinate

o the majority. In order to show the advantage of using relative

nd absolute quantitative simultaneously under multiple granular

tructures, a specific case is introduced in this paper. 

In this section, a knowledge representation system of cars is

ntroduced to illustrate the theory and advantage of the new

odel. Detailed description is shown in the following. Let S =
(U, AT , D, F ) be a decision table, where U is composed of 20 cars,

nd AT = { Design, Model, Color} ia a conditional attribute set and

 = { Beauty } is a decision attribute set. Let A i ⊆ AT , i = 1 , 2 , 3 . de-

ote equivalence relations about condition attributes, where A 1 =
 Design, Model} , A 2 = { Design, Color} , A 3 = { Model, Color} . Based on

he measured car data in Table 2 , Table 3–5 show the statistical

esults of car classes under different granular structures, where

 i, j ) ( i, j ∈ [0, 2]) denotes the rank of condition attributes and

 = { x 2 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 15 , x 16 , x 19 } denotes a decision class

n which cars are beautiful. The rough set regions will be calcu-

ated in the case that k = 1 , ϕ = 2 / 3 . 

.1. Description of the GMDq-DTRS theory 

Firstly, results of car classes under A 1 , A 2 , A 3 granular structures

an be get from Table 3–5 . 

Then we can get the generalized multigranulation double-

uantitative lower and upper approximations of X with respect to
 3 
i =1 A i under different constraint conditions. In the Bayesian de-

ision procedure [37] , experts will give values of the loss function,

amely, λiP = λ(a i | X ) , λiN = λ(a i | X C ) , and i = P, B, N. 

Case 1 : Consider loss functions of Table 6 , there are α1 =
 . 6 , β1 = 0 . 4 , α2 = 0 . 7 , β2 = 0 . 3 , α3 = 0 . 8 , β3 = 0 . 2 . It is true that

i + βi = 1 for i = 1 , 2 , 3 . According to Table 2–4 , we can obtain

he upper and lower approximations of DqI-DTRS model. 
Under the granular structure A 1 , according to the definition of

qI-DTRS, we can get 

 1 (0 . 6 , 0 . 4) (X ) = U − { x 3 , x 4 , x 11 , x 17 } 
= { x 1 , x 2 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } , 
 1 1 

(X ) = U − { x 4 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } . 
Under the granular structure A 2 , according to the definition of

qI-DTRS, we can get 

 2 (0 . 7 , 0 . 3) (X ) = U − { x 8 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 9 , x 10 , x 11 , 

x 12 , x 13 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } , 
 2 1 

(X ) = U − { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } 
= { x 2 , x 3 , x 4 , x 6 , x 8 , x 10 , x 12 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } . 

Under the granular structure A 3 , according to the definition of

qI-DTRS, we can get 

 3 (0 . 8 , 0 . 2) (X ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } , 
 3 1 

(X ) = U − { x 7 , x 8 , x 17 , x 18 , x 20 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 11 , x 12 , x 13 , x 14 , x 15 , x 16 , x 19 } . 

Then on the basis of the definition of GM 

I ∑ S 
i =1 A i 

and GM 

I ∑ S 
i =1 A i 

,

here are 

M 

I ∑ 3 
i =1 A i 

(X ) = U − { x 8 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 9 , x 10 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } 
M 

I ∑ 3 
i =1 A i 

(X ) = U − { x 7 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } 
By the lower approximation GM 

I ∑ 3 
i =1 A i 

(X ) and upper approxi-

ation GM 

I ∑ 3 A i 
(X ) , the positive region, negative region, upper
i =1 
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Table 4 

Statistical results of car classes under the granular structure A 2. 

( i, j ) [ x ] A 2 | [ x ] A 2 | [ x ] A 2 ∩ X | [ x ] A 2 ∩ X| P(X| [ x ] A 2 ) | [ x ] A 2 | − | [ x ] A 2 ∩ X| 
(0, 0) x 8 1 ∅ 0 0 1 

(0, 1) x 2, 10, 18 3 x 2, 10 2 2/3 1 

(0, 2) x 12, 14 2 x 12 1 1/2 1 

(1, 0) x 1, 5, 11 3 x 5 1 1/3 2 

(1, 1) x 15, 17 2 x 15 1 1/2 1 

(1, 2) x 3, 4 2 x 4 1 1/2 1 

(2, 0) x 19, 20 2 x 19 1 1/2 1 

(2, 1) x 7, 9, 13 3 x 9 1 1/3 2 

(2, 2) x 6, 16 2 x 6, 16 2 1 0 

Table 5 

Statistical results of car classes under the granular structure A 3. 

( i, j ) [ x ] A 3 | [ x ] A 3 | [ x ] A 3 ∩ X | [ x ] A 3 ∩ X| P(X| [ x ] A 3 ) | [ x ] A 3 | − | [ x ] A 3 ∩ X| 
(0, 0) x 1, 5, 19 3 x 5, 19 2 2/3 1 

(0, 1) x 2, 13, 15 3 x 2, 15 2 2/3 1 

(0, 2) x 14 1 ∅ 0 0 1 

(1, 0) x 11 1 ∅ 0 0 1 

(1, 1) x 7, 17, 18 3 ∅ 0 0 3 

(1, 2) x 4, 12, 16 3 x 4, 12, 16 3 1 0 

(2, 0) x 8, 20 2 ∅ 0 0 2 

(2, 1) x 9, 10 2 x 9, 10 2 1 0 

(2, 2) x 3, 6 2 x 6 1 1/2 1 

Table 6 

Loss functions of A 1 , A 2 , A 3 granular structures. 

A 1 A 2 A 3 

a P 0 22 0 13 0 36 

a B 12 4 3 6 8 4 

a N 18 0 17 0 24 0 
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and lower boundary region of X are as follows: 

pos I (X ) = U − { x 7 , x 8 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 };

neg I (X ) = { x 11 , x 17 };Ubn 

I (X ) = { x 7 }; Lbn 

I (X ) = { x 8 } . 
Similarly, according to results from Table 7–9 and definitions of

DqII-DTRS, we can obtain the upper and lower approximations of

∼ X = { x 1 , x 3 , x 7 , x 8 , x 11 , x 13 , x 14 , x 17 , x 18 , x 20 } about DqII-DTRS. 

Under the granular structure A 1 , according to the definition of

DqII-DTRS, we can get 

A 1 1 (∼ X ) = { x 4 , x 11 , x 17 } , A 1 (0 . 6 , 0 . 4) 
(∼ X ) = { x 3 , x 4 , x 11 , x 17 } . 

Under the granular structure A 2 , according to the definition of

DqII-DTRS, we can get 

A 2 1 (∼ X ) = { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } , A 2 (0 . 7 , 0 . 3) 
(∼ X ) = { x 8 } . 

Under the granular structure A 3 , according to the definition of

DqII-DTRS, we can get 

A 3 1 (∼ X ) = { x 7 , x 8 , x 17 , x 18 , x 20 } , 
A 3 (0 . 8 , 0 . 2) 

(∼ X ) = { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } . 
Then according to the definition of GM 

II ∑ S 
i =1 A i 

and GM 

II ∑ S 
i =1 A i 

,

there are 

GM 

II ∑ 3 
i =1 A i 

(∼ X ) = { x 7 , x 11 , x 17 } , GM 

II ∑ 3 
i =1 A i 

(∼ X ) = { x 8 , x 11 , x 17 } . 
By the lower approximation GM 

II ∑ 3 
i =1 A i 

(∼ X ) and upper approx-

imation GM 

II ∑ 3 
i =1 A i 

(∼ X ) , the positive region, negative region, up-

per boundary region and lower boundary region of ∼ X are as
ollowing: 

pos II (∼ X ) = { x 7 , x 11 };Ubn 

II (∼ X ) = { x 7 }; Lbn 

II (∼ X ) = { x 8 };
eg II (∼ X ) = U − { x 7 , x 8 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } . 

Compared with above results of the positive, negative and

oundary regions of GMDqIRS and GMDqIIRS, we can obtain

hat the accepted region, rejective region, delayed region of X in

MDqI-DTRS are equivalent to the rejective region, accepted re-

ion, delayed region of ∼ X in GMDqII-DTRS, respectively. 

Case 2 : Consider loss functions of Table 10 , then it is true that

i + βi < 1 for i = 1 , 2 , 3 . We can obtain the upper and lower ap-

roximations of DqI-DTRS model. 

From the loss founction of the granular structure A 1 , there are

i = 0 . 6 , and βi = 0 . 3 . By the definition of DqI-DTRS and the result

f Table 3 , we can get 

 1 (0 . 6 , 0 . 3) (X ) = U − { x 3 } 
= { x 1 , x 2 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 11 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } , 
 1 1 

(X ) = U − { x 4 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } . 
From the loss founction of the granular structure A 2 , there are

i = 0 . 7 , and βi = 0 . 2 . By the definition of DqI-DTRS and the result

f Table 4 , we can obtain 

 2 (0 . 7 , 0 . 2) (X ) = U − { x 8 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 9 , x 10 , x 11 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } , 
 2 1 

(X ) = U − { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } 
= { x 2 , x 3 , x 4 , x 6 , x 8 , x 10 , x 12 , x 14 , 

x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } . 
From the loss founction of the granular structure A 3 , there are

i = 0 . 8 , and βi = 0 . 1 . By the definition of DqI-DTRS and the result

f Table 5 , we can have 
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Table 7 

Statistical results of car classes under the granular structure A 1 . 

( i, j ) [ x ] A 1 | [ x ] A 1 | [ x ] A 1 ∩ (∼ X ) | [ x ] A 1 ∩ (∼ X ) | P((∼ X ) | [ x ] A 1 ) | [ x ] A 1 | − | [ x ] A 1 ∩ (∼ X ) | 
(0, 0) x 2, 14 2 x 14 1 1/2 1 

(0, 1) x 12, 18 2 x 18 1 1/2 1 

(0, 2) x 8, 10 2 x 8 1 1/2 1 

(1, 0) x 1, 5, 15 3 x 1 1 1/3 2 

(1, 1) x 4, 11, 17 3 x 11, 17 2 2/3 1 

(1, 2) x 3 1 x 3 1 1 0 

(2, 0) x 13, 19 2 x 13 1 1/2 1 

(2, 1) x 7, 16 2 x 7 1 1/2 1 

(2, 2) x 6, 9, 20 3 x 20 1 1/3 2 

Table 8 

Statistical results of car classes under the granular structure A 2 . 

( i, j ) [ x ] A 2 | [ x ] A 2 | [ x ] A 2 ∩ (∼ X ) | [ x ] A 2 ∩ (∼ X ) | P((∼ X ) | [ x ] A 2 ) | [ x ] A 2 | − | [ x ] A 2 ∩ (∼ X ) | 
(0, 0) x 8 1 x 8 1 1 0 

(0, 1) x 2, 10, 18 3 x 18 1 1/3 2 

(0, 2) x 12, 14 2 x 14 1 1/2 1 

(1, 0) x 1, 5, 11 3 x 1, 11 2 2/3 1 

(1, 1) x 15, 17 2 x 17 1 1/2 1 

(1, 2) x 3, 4 2 x 3 1 1/2 1 

(2, 0) x 19, 20 2 x 20 1 1/2 1 

(2, 1) x 7, 9, 13 3 x 7, 13 2 2/3 1 

(2, 2) x 6, 16 2 ∅ 0 0 2 

Table 9 

Statistical results of car classes under the granular structure A 3 . 

( i, j ) [ x ] A 3 | [ x ] A 3 | [ x ] A 3 ∩ (∼ X ) | [ x ] A 3 ∩ (∼ X ) | P((∼ X ) | [ x ] A 3 ) | [ x ] A 3 | − | [ x ] A 3 ∩ (∼ X ) | 
(0, 0) x 1, 5, 19 3 x 1 1 1/3 2 

(0, 1) x 2, 13, 15 3 x 13 1 1/3 2 

(0, 2) x 14 1 x 14 1 1 0 

(1, 0) x 11 1 x 11 1 1 0 

(1, 1) x 7, 17, 18 3 x 7, 17, 18 3 1 0 

(1, 2) x 4, 12, 16 3 ∅ 0 0 3 

(2, 0) x 8, 20 2 x 8, 20 2 1 0 

(2, 1) x 9, 10 2 ∅ 0 0 2 

(2, 2) x 3, 6 2 x 3 1 1/2 1 

Table 10 

Loss functions of A 1 , A 2 , A 3 granular struc- 

tures. 

A 1 A 2 A 3 

a P 0 9 0 19 0 18 

a B 2 6 6 5 4 2 

a N 16 0 26 0 22 0 
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 3 (0 . 8 , 0 . 1) (X ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } , 
 3 1 

(X ) = U − { x 7 , x 8 , x 17 , x 18 , x 20 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 11 , x 12 , x 13 , x 14 , x 15 , x 16 , x 19 } . 

According to the definition of GM 

I ∑ S 
i =1 A i 

and GM 

I ∑ S 
i =1 A i 

, there are 

M 

I ∑ 3 
i =1 A i 

(X ) = U − { x 8 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 9 , x 10 , x 11 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } 
M 

I ∑ 3 
i =1 A i 

(X ) = U − { x 7 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20

By the lower approximation GM 

I ∑ 3 
i =1 A i 

(X ) and upper approx-

mation GM 

I ∑ 3 
i =1 A i 

(X ) , the positive region, negative region, up-

er boundary region and lower boundary region of X are as
ollowing: 

pos I (X ) = U − { x 7 , x 8 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 };
eg I (X ) = ∅;Ubn 

I (X ) 

= { x 7 , x 11 , x 17 }; Lbn 

I (X ) = { x 8 } . 
Similarly, we can obtain the upper and lower approximations of

X = { x 1 , x 3 , x 7 , x 8 , x 11 , x 13 , x 14 , x 17 , x 18 , x 20 } about DqII-DTRS. 

When α1 = 0 . 6 , β1 = 0 . 3 , there are A 1 1 (∼ X ) = { x 4 , x 11 , x 17 } ,
 1 (0 . 6 , 0 . 3) 

(∼ X ) = { x 3 , x 4 , x 11 , x 17 } . 
When α2 = 0 . 7 , β2 = 0 . 2 , there are A 2 1 (∼ X ) =

 x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } , A 2 (0 . 7 , 0 . 2) 
(∼ X ) = { x 8 } . 

When α3 = 0 . 8 , β3 = 0 . 1 , there are A 3 1 (∼ X ) =
 x 7 , x 8 , x 17 , x 18 , x 20 } , A 3 (0 . 8 , 0 . 1) 

(∼ X ) = { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } . 
According to the definition of GM 

II ∑ S 
i =1 A i 

and GM 

II ∑ S 
i =1 A i 

, there are 

M 

II ∑ 3 
i =1 A i 

(∼ X ) 

= { x 7 , x 11 , x 17 } , GM 

II ∑ 3 
i =1 A i 

(∼ X ) = { x 8 , x 11 , x 17 } . 

By the lower approximation GM 

II ∑ 3 
i =1 A i 

(∼ X ) and upper approx-

mation GM 

II ∑ 3 
i =1 A i 

(∼ X ) , the positive region, negative region, up-

er boundary region and lower boundary region of ∼ X are as

ollowing: 
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Table 11 

Loss functions of A 1 , A 2 , A 3 granular struc- 

tures. 

A 1 A 2 A 3 

a P 0 13 0 13 0 19 

a B 6 4 3 6 4 3 

a N 10 0 12 0 11 0 
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pos II (∼ X ) = { x 7 , x 11 };Ubn 

II (∼ X ) = { x 7 }; Lbn 

II (∼ X ) = { x 8 } 
neg II (∼ X ) = U − { x 7 , x 8 , x 11 , x 17 } 

= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } . 
Comparison of results of the positive, negative and boundary

regions between GMDqIRS and GMDqIIRS , we can obtain that the

rejective region and lower delayed region of X in GMDqI-DTRS are

contained in the accepted region and lower delayed region of ∼ X

in GMDqII-DTRS, respectively; the rejective region and upper de-

layed region of ∼ X in GMDqII-DTRS are included in the accepted

region and upper delayed region of X in GMDqI-DTRS, respectively.

Case 3 : Considering loss functions of Table 11 , then conclusion

αi + βi > 1 , i = 1 , 2 , 3 hold. We can obtain the upper and lower ap-

proximations of X about DqI-DTRS. 

When αi = 0 . 6 , βi = 0 . 5 , there are 

A 1 (0 . 6 , 0 . 5) (X ) = { x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } , 
A 1 1 

(X ) = U − { x 4 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } . 
When αi = 0 . 7 , βi = 0 . 4 , there are 

A 2 (0 . 7 , 0 . 4) (X ) = U − { x 1 , x 5 , x 7 , x 8 , x 9 , x 11 , x 13 } 
= { x 2 , x 3 , x 4 , x 6 , x 10 , x 12 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } , 

A 2 1 
(X ) = U − { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } 

= { x 2 , x 3 , x 4 , x 6 , x 8 , x 10 , x 12 , x 14 , x 15 , x 16 , x 17 , x 18 , x 19 , x 20 } . 
When αi = 0 . 8 , βi = 0 . 3 , there are 

A 3 (0 . 8 , 0 . 3) (X ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } , 

A 3 1 
(X ) = U − { x 7 , x 8 , x 17 , x 18 , x 20 } 

= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 11 , x 12 , x 13 , x 14 , x 15 , x 16 , x 19 } . 
According to the definition of GM 

I ∑ S 
i =1 A i 

and GM 

I ∑ S 
i =1 A i 

, there

are 

GM 

I ∑ 3 
i =1 A i 

(X ) = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 15 , x 16 , x 19 , x 20 } 
GM 

I ∑ 3 
i =1 A i 

(X ) = U − { x 7 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 8 , x 9 , x 10 , x 12 , 

x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } 
By the lower approximation GM 

I ∑ 3 
i =1 A i 

(X ) and upper approxi-

mation GM 

I ∑ 3 
i =1 A i 

(X ) , the positive region, negative region, upper

boundary region and lower boundary region of X are as follow-

ing: 

pos I (X ) = U − { x 7 , x 8 , x 11 , x 13 , x 14 , x 17 , x 18 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 15 , x 16 , x 19 , x 20 };

neg I (X ) = { x 7 , x 11 , x 17 };Ubn 

I (X ) = ∅; Lbn 

I (X ) = { x 8 , x 13 , x 14 , x 18 } . 
Similarly, we can obtain the upper and lower approximations of

∼ X = { x 1 , x 3 , x 7 , x 8 , x 11 , x 13 , x 14 , x 17 , x 18 , x 20 } about DqII-DTRS. 

When αi = 0 . 6 , βi = 0 . 5 , there are A 1 1 (∼ X ) =
{ x 4 , x 11 , x 17 } , A 1 (0 . 6 , 0 . 5) 

(∼ X ) = { x 3 , x 4 , x 11 , x 17 } . 
When αi = 0 . 7 , βi = 0 . 4 , there are A 2 1 (∼ X ) =
 x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } , A 2 (0 . 7 , 0 . 4) 

(∼ X ) = { x 8 } . 
When αi = 0 . 8 , βi = 0 . 3 , there are A 3 1 (∼ X ) =

 x 7 , x 8 , x 17 , x 18 , x 20 } , A 3 (0 . 8 , 0 . 3) 
(∼ X ) = { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } . 

According to the definition of GM 

II ∑ S 
i =1 A i 

and GM 

II ∑ S 
i =1 A i 

, there

re 

M 

II ∑ 3 
i =1 A i 

(∼ X ) = { x 7 , x 11 , x 17 } , GM 

II ∑ 3 
i =1 A i 

(∼ X ) = { x 8 , x 11 , x 17 } . 
By the lower approximation GM 

II ∑ 3 
i =1 A i 

(∼ X ) and upper approxi-

ation GM 

II ∑ 3 
i =1 A i 

(∼ X ) , the positive region, negative region, upper

nd lower boundary region of ∼ X are as following: 

pos II (∼ X ) = { x 7 , x 11 };Ubn 

II (∼ X ) = { x 7 }; Lbn 

II (∼ X ) = { x 8 };
eg II (∼ X ) = U − { x 7 , x 8 , x 11 , x 17 } 
= { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 9 , x 10 , x 12 , x 13 , x 14 , x 15 , x 16 , x 18 , x 19 , x 20 } . 

Observing above results of the positive, negative and boundary

egions in GMDqIRS and GMDqIIRS , we can known that the ac-

epted region and upper delayed region of X in GMDqI-DTRS are

ontained in the rejective region and upper delayed region of ∼ X

n GMDqII-DTRS, respectively; the accepted region and lower de-

ayed region of ∼ X in GMDqII-DTRS are included in rejective re-

ion and lower delayed region of X in GMDqI-DTRS, respectively. 

When αi < 1, β i > 0, k ≥ 1, by comparing related results of gen-

ralized multigranulation double-quantitative rough sets and gen-

ralized multigranulation rough sets, we find generalized multi-

ranulation double-quantitative decision-theoretic rough set theory

as a strong fault tolerance ability, and can provide a more detailed

escription of the approximate space. 

.2. Description of the relationship between GMDq-DTRS and GMRS 

According to the Pawlak rough set theory, the lower and up-

er approximations of X under different granular structures can be

btained. Detailed results are as follows: 

A 1 (X ) = U − { x 3 } , A 1 (X ) = ∅;
A 2 (X ) = U − { x 8 } , A 2 (X ) = { x 6 , x 16 };
A 3 (X ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } , A 3 (X ) = { x 4 , x 9 , x 10 ,

 12 , x 16 } . 
When the information level ϕ = 2 / 3 , the generalized multi-

ranulation lower and upper approximations of X with respect to
 3 
i =1 A i can be obtained, namely 

GM 

∑ 3 
i =1 A i 

(X ) = U − { x 8 } , GM 

∑ 3 
i =1 A i 

(X ) = { x 16 } . 
On the other hand, when αi = 1 , βi = 0 , k = 0 , the lower and

pper approximations of X under different granular structures can

e obtained in the DqI-DTRS model. Detailed results are as follows:

A 1 (1 , 0) (X ) = U − { x 3 } = A 1 (X ) , A 1 0 
(X ) = ∅ = A 1 (X ) ;

A 2 (1 , 0) (X ) = U − { x 8 } = A 2 (X ) , A 2 0 
(X ) = { x 6 , x 16 } = A 2 (X ) ;

A 3 (1 , 0) (X ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } = A 3 (X ) , A 3 0 
(X ) =

 x 4 , x 9 , x 10 , x 12 , x 16 } = A 3 (X ) . 

When the information level ϕ = 2 / 3 , the lower and upper ap-

roximations of an arbitrary subset X with respect to 
∑ 3 

i =1 A i can

e obtained in the GMDqI-DTRS, namely 

GM 

I ∑ 3 
i =1 A i 

(X ) = U − { x 8 } = GM 

∑ 3 
i =1 A i 

(X ) , GM 

I ∑ 3 
i =1 A i 

(X ) = { x 16 } = 

M 

∑ 3 
i =1 A i 

(X ) . 

And the lower and upper approximations of X under different

ranular structures can be obtained in the DqII-DTRS model. De-

ailed results are as follows: 

A 1 0 (X ) = U − { x 3 } = A 1 (X ) , A 1 (1 , 0) 
(X ) = ∅ = A 1 (X ) ;

A 2 0 (X ) = U − { x 8 } = A 2 (X ) , A 2 (1 , 0) 
(X ) = { x 6 , x 16 } = A 2 (X ) ;

A 3 0 (X ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } = A 3 (X ) , A 3 (1 , 0) 
(X ) =

 x 4 , x 9 , x 10 , x 12 , x 16 } = A 3 (X ) . 
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When the information level ϕ = 2 / 3 , the lower and upper ap-

roximations of an arbitrary subset X with respect to 
∑ 3 

i =1 A i can

e obtained in the GMDqII-DTRS, namely 

GM 

II ∑ 3 
i =1 A i 

(X ) = U − { x 8 } = GM 

∑ 3 
i =1 A i 

(X ) , GM 

II ∑ 3 
i =1 A i 

(X ) = { x 16 } = 

M 

∑ 3 
i =1 A i 

(X ) . 

By comparing the results of generalized multigranulation

ouble-quantitative rough sets and generalized multigranulation

ough sets, we can find the two kinds of the generalized multigran-

lation double-quantitative decision-theoretic rough set are also

quivalent when αi = 1 , βi = 0 , k = 0 . The two kinds of the gen-

ralized multigranulation double-quantitative decision-theoretic 

ough set are all equivalent to the generalized multigranulation

ough set. 

.3. Description of the advantage of GMDq-DTRS 

The calculation method of the approximation accuracy of U / DT

ith respect to 
∑ S 

i =1 A i in the generalized multigranulation rough

et(GMRS) is as follows: 

∑ S 
i =1 A i 

(U/DT ) = 

∑ 

Y i ∈ U/DT | GM 

∑ S 
i =1 A i 

(Y i ) | ∑ 

Y i ∈ U/D | GM 

∑ S 
i =1 A i 

(Y i ) | 
, 

here GM 

∑ S 
i =1 A i 

(X ) = { x ∈ U : ( 
∑ S 

i =1 (1 − S 
A i 
� X 

(x ))) /s > 1 −
} , GM 

∑ S 
i =1 A i 

(X ) = { x ∈ U : ( 
∑ S 

i =1 S 
A i 
X 

(x )) /s ≥ ϕ} . 
The lower and upper approximations of decision classes X 1 and

 2 under granular structures A 1 , A 2 and A 3 can be obtained as fol-

ows: 

A 1 (X 1 ) = U − { x 3 } , A 1 (X 1 ) = ∅; A 1 (X 2 ) = U, A 1 (X 2 ) = { x 3 };
A 2 (X 1 ) = U − { x 8 } , A 2 (X 1 ) = { x 6 , x 16 }; A 2 (X 2 ) = U − { x 6 , x 16 } ,

 2 (X 2 ) = { x 8 };
A 3 (X 1 ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } , A 3 (X 1 ) = { x 4 , x 9 , x 10 ,

 12 , x 16 };
A 3 (X 2 ) = U − { x 4 , x 9 , x 10 , x 12 , x 16 } , A 3 (X 2 ) = { x 7 , x 8 , x 11 , x 14 , x 17 ,

 18 , x 20 } . 
In the GMRS, the lower and upper approximations of X 1 and

 2 with respect to 
∑ S 

i =1 A i can be obtained as follows: 

GM 

∑ S 
i =1 A i 

(X 1 ) = U − { x 8 } , GM 

∑ S 
i =1 A i 

(X 1 ) = { x 16 };
M 

∑ S 
i =1 A i 

(X 2 ) = U − { x 16 } , GM 

∑ S 
i =1 A i 

(X 2 ) = { x 8 } . 
Therefore, the approximation accuracy of U / DT with respect to

 S 
i =1 A i in the generalized multigranulation rough set(GMRS) can 

e calculated as α∑ S 
i =1 A i 

(U/DT ) = 

| GM 

∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

∑ S 
i =3 

A i 
(X 2 ) | 

| GM 

∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

∑ 3 
i =1 

A i 
(X 2 ) | = 

1 
19 . 

In the first kind of double-quantitative decision-theoretic rough

et(DqI-DTRS), the lower and upper approximations of decision

lasses X 1 and X 2 under granular structures A 1 , A 2 and A 3 can be

btained as follows: 

when αi + βi = 1 , 

A 1 (0 . 6 , 0 . 4) (X 1 ) = U − { x 3 , x 4 , x 11 , x 17 } , A 1 1 
(X 1 ) = U − { x 4 , x 11 , x 17 };

A 1 (0 . 6 , 0 . 4) (X 2 ) = U − { x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } , A 1 1 
(X 2 ) = U −

 x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } . 
A 2 (0 . 7 , 0 . 3) (X 1 ) = U − { x 8 } , A 2 1 

(X 1 ) = U − { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 };
A 2 (0 . 7 , 0 . 3) (X 2 ) = U − { = x 6 , x 16 } , A 2 1 

(X 2 ) = U −
 x 2 , x 6 , x 10 , x 16 , x 18 } . 

A 3 (0 . 8 , 0 . 2) (X 1 ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } , A 3 1 
(X 1 ) = 

 − { x 7 , x 8 , x 17 , x 18 , x 20 } 
A 3 (0 . 8 , 0 . 2) (X 2 ) = U − { x 4 , x 9 , x 10 , x 12 , x 16 } , A 3 1 

(X 2 ) = U −
 x 1 , x 2 , x 4 , x 5 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } . 

In the GMDqI-DTRS, when ϕ = 2 / 3 , the lower and upper ap-

roximations of X 1 and X 2 with respect to 
∑ S 

i =1 A i can be obtained

s follows: 

GM 

I ∑ 3 
i =1 A i 

(X 1 ) = U − { x 8 , x 11 , x 17 } , GM 

I ∑ 3 
i =1 A i 

(X 1 ) = U −
 x , x , x };
7 11 17 
GM 

I ∑ 3 
i =1 A i 

(X 2 ) = U − { x 6 , x 9 , x 16 } , GM 

I ∑ 3 
i =1 A i 

(X 2 ) = U −
 x 1 , x 2 , x 5 , x 6 , x 9 , x 10 , x 15 , x 16 } 

Therefore, the approximation accuracy of U / DT with respect to
 S 
i =1 A i in the GMDqI-DTRS can be calculated as α∑ S 

i =1 A i 
(U/DT ) = 

| GM 

I ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

I ∑ S 
i =3 

A i 
(X 2 ) | 

| GM 

I ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

I ∑ 3 
i =1 

A i 
(X 2 ) | 

= 

29 
34 . 

When αi + βi < 1 , 

A 1 (0 . 6 , 0 . 3) (X 1 ) = U − { x 3 } , A 1 1 
(X 1 ) = U − { x 4 , x 11 , x 17 };

A 1 (0 . 6 , 0 . 3) (X 2 ) = U, A 1 1 
(X 2 ) = U − { x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } . 

A 2 (0 . 7 , 0 . 2) (X 1 ) = U − { x 8 } , A 2 1 
(X 1 ) = U − { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 };

A 2 (0 . 7 , 0 . 2) (X 2 ) = U − { x 6 , x 16 } , A 2 1 
(X 2 ) = U − { x 2 , x 6 , x 10 , x 16 , x 18 } . 

A 3 (0 . 8 , 0 . 1) (X 1 ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } , A 3 1 
(X 1 ) = 

 − { x 7 , x 8 , x 17 , x 18 , x 20 } 
A 3 (0 . 8 , 0 . 1) (X 2 ) = U − { x 4 , x 9 , x 10 , x 12 , x 16 } , A 3 1 

(X 2 ) = U −
 x 1 , x 2 , x 4 , x 5 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } . 

In the GMDqI-DTRS, when ϕ = 2 / 3 , the lower and upper ap-

roximations of X 1 and X 2 with respect to 
∑ S 

i =1 A i can be obtained

s follows: 

GM 

I ∑ 3 
i =1 A i 

(X 1 ) = U − { x 8 } , GM 

I ∑ 3 
i =1 A i 

(X 1 ) = U − { x 7 , x 11 , x 17 };
GM 

I ∑ 3 
i =1 A i 

(X 2 ) = U − { x 16 } , GM 

I ∑ 3 
i =1 A i 

(X 2 ) = U −
 x 1 , x 2 , x 5 , x 6 , x 9 , x 10 , x 15 , x 16 } . 

Therefore, the approximation accuracy of U / DT with respect to
 S 
i =1 A i in the GMDqI-DTRS can be calculated as α∑ S 

i =1 A i 
(U/DT ) = 

| GM 

I ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

I ∑ S 
i =3 

A i 
(X 2 ) | 

| GM 

I ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

I ∑ 3 
i =1 

A i 
(X 2 ) | 

= 

29 
38 . 

When αi + βi > 1 , 

A 1 (0 . 6 , 0 . 5) (X 1 ) = { x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } , A 1 1 
(X 1 ) = U −

 x 4 , x 11 , x 17 };
A 1 (0 . 6 , 0 . 5) (X 2 ) = { x 3 , x 4 , x 11 , x 17 } , A 1 1 

(X 2 ) = U −
 x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } . 

A 2 (0 . 7 , 0 . 4) (X 1 ) = U − { x 1 , x 5 , x 7 , x 8 , x 9 , x 11 , x 13 } , A 2 1 
(X 1 ) = 

 − { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 };
A 2 (0 . 7 , 0 . 4) (X 2 ) = U − { x 2 , x 6 , x 10 , x 16 , x 18 } , A 2 1 

(X 2 ) = U −
 x 2 , x 6 , x 10 , x 16 , x 18 } . 

A 3 (0 . 8 , 0 . 3) (X 1 ) = U − { x 7 , x 8 , x 11 , x 14 , x 17 , x 18 , x 20 } , A 3 1 
(X 1 ) = 

 − { x 7 , x 8 , x 17 , x 18 , x 20 } 
A 3 (0 . 8 , 0 . 3) (X 2 ) = U − { x 4 , x 9 , x 10 , x 12 , x 16 } , A 3 1 

(X 2 ) = U −
 x 1 , x 2 , x 4 , x 5 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } . 

In the GMDqI-DTRS, when ϕ = 2 / 3 , the lower and upper ap-

roximations of X 1 and X 2 with respect to 
∑ S 

i =1 A i can be obtained

s follows: 

GM 

I ∑ 3 
i =1 A i 

(X 1 ) = U − { x 7 , x 8 , x 11 , x 13 , x 14 , x 17 , x 18 } , GM 

I ∑ 3 
i =1 A i 

(X 1 ) =
 − { x 7 , x 11 , x 17 };

GM 

I ∑ 3 
i =1 A i 

(X 2 ) = U − { x 2 , x 6 , x 9 , x 10 , x 12 , x 16 , x 18 } , GM 

I ∑ 3 
i =1 A i 

(X 2 ) = 

 − { x 1 , x 2 , x 5 , x 6 , x 9 , x 10 , x 15 , x 16 } . 
Therefore, the approximation accuracy of U / DT with respect to

 S 
i =1 A i in the GMDqI-DTRS can be calculated as α∑ S 

i =1 A i 
(U/DT ) = 

| GM 

I ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

I ∑ S 
i =3 

A i 
(X 2 ) | 

| GM 

I ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

I ∑ 3 
i =1 

A i 
(X 2 ) | 

= 

29 
26 . 

By comparing the results of the approximation accuracy of

MDqI-DTRS and GMRS, it is evident that the approximation ac-

uracy of GMDqI-DTRS is higher than the approximation accuracy

f GMRS no matter what kind of constraints. 

In the second kind of double-quantitative decision-theoretic

ough set(DqII-DTRS), the lower and upper approximations of deci-

ion classes X 1 and X 2 under granular structures A 1 , A 2 and A 3 can

e obtained as follows: 

when αi + βi = 1 , 
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A 1 1 (X 1 ) = { x 1 , x 5 , x 6 , x 9 , x 15 , x 20 } , A 1 (0 . 6 , 0 . 4) 
(X 1 ) = 

{ x 1 , x 5 , x 6 , x 9 , x 15 , x 20 };
A 1 1 (X 2 ) = { x 4 , x 11 , x 17 } , A 1 (0 . 6 , 0 . 4) 

(X 2 ) = { x 3 , x 4 , x 11 , x 17 } . 
A 2 1 (X 1 ) = { x 2 , x 6 , x 10 , x 16 , x 18 } , A 2 (0 . 7 , 0 . 3) 

(X 1 ) = { x 6 , x 16 };
A 2 1 (X 2 ) = { x 1 , x 5 , x 7 , x 9 , x 11 , x 13 } , A 2 (0 . 6 , 0 . 4) 

(X 2 ) = { x 8 } . 
A 3 1 (X 1 ) = { x 1 , x 2 , x 4 , x 5 , x 9 , x 10 , x 12 , x 13 , x 15 , x 16 , x 19 } , A 3 (0 . 8 , 0 . 2) 

(X 1 ) = { x 4 , x 9 , x 10 , x 12 , x 16 };
A 3 1 (X 2 ) = { x 7 , x 8 , x 17 , x 18 , x 20 } , A 3 (0 . 6 , 0 . 4) 

(X 2 ) = 

{ x 4 , x 7 , x 8 , x 11 , x 17 , x 18 , x 20 } . 
In the GMDqI-DTRS, when ϕ = 2 / 3 , the lower and upper ap-

proximations of X 1 and X 2 with respect to 
∑ S 

i =1 A i can be obtained

as follows: 

GM 

II ∑ 3 
i =1 A i 

(X 1 ) = { x 1 , x 2 , x 5 , x 6 , x 9 , x 15 , x 16 , x 20 } , GM 

II ∑ 3 
i =1 A i 

(X 1 ) = 

{ x 6 , x 9 , x 16 };
GM 

II ∑ 3 
i =1 A i 

(X 2 ) = { x 7 , x 11 , x 17 } , GM 

II ∑ 3 
i =1 A i 

(X 2 ) = { x 8 , x 11 , x 17 } . 
Therefore, the approximation accuracy of U / DT with respect to∑ S 

i =1 A i in the GMDqI-DTRS can be calculated as α∑ S 
i =1 A i 

(U/DT ) =
| GM 

II ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

II ∑ S 
i =3 

A i 
(X 2 ) | 

| GM 

II ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

II ∑ 3 
i =1 

A i 
(X 2 ) | 

= 

6 
11 . 

When αi + βi < 1 and αi + βi > 1 , the approximation accu-

racy of U / DT with respect to 
∑ S 

i =1 A i in the GMDqI-DTRS is also

α∑ S 
i =1 A i 

(U/DT ) = 

| GM 

II ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

II ∑ S 
i =3 

A i 
(X 2 ) | 

| GM 

II ∑ 3 
i =1 

A i 
(X 1 ) | + | GM 

II ∑ 3 
i =1 

A i 
(X 2 ) | 

= 

6 
11 . 

By comparing the results of the approximation accuracy of

GMDqII-DTRS and GMRS, it is evident that the approximation ac-

curacy of GMDqII-DTRS is higher than the approximation accuracy

of GMRS no matter what kind of constraints. 

In conclusion, approximate classification capability of general-

ized multigranulation double-quantitative rough sets is better than

approximate classification capability of the generalized multigran-

ulation rough set. 

5. Conclusions 

By weakening constraint conditions, double-quantitative rough

sets are more consistent with the reality of the approximation

space and provide enough information for making decisions. And

the principle of the minority subordinate to the majority is the

most feasible and credible when people make decisions in real

world. The research on combining generalized multigranulation

with double-quantitative decision-theoretic is significant. In this

paper, we propose the definition of lower and upper approxi-

mations of generalized multigranulation double-quantitative rough

sets. Through the pair, we get basic concepts of two kinds of gener-

alized multigranulation double-quantitative rough sets and obtain

corresponding decision rules based on the idea of three-way deci-

sions. Then the relationship between these two kinds of rough sets

is discussed under different constraint conditions. Moreover, the

relationship between GMDq-DTRS and other models is compared

in detail. Finally, the theory and advantage of the new model are

interpreted by an illustrative case study. 

Generalized multigranulation double-quantitative decision-

theoretic rough sets provide theoretical foundation for making

decisions and extend generalized multigranulation rough sets. This

paper just provides a framework of generalized multigranulation

double-quantitative decision-theoretic rough sets. Like uncertainty

measures and properties of models with respect to concepts and

parameters need to be explored. Generalized multigranulation

double-quantitative decision-theoretic rough sets provide a new

method for information fusion. Especially, applications of the

models proposed in the paper to real life should be studied in the

future. 
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